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In this article, the simultaneous convection-radiation heat transfer of a moving fin
of variable thermal conductivity is studied. The differential transformation method
is applied for an analytic solution for heat transfer in fin with two different profiles.
Fin profiles are rectangular and exponential. The accuracy of analytic solution is
validated by comparing it with the numerical solution that is obtained by fourth-or-
der Runge-Kutta method. The analytical and numerical results are shown for dif-
ferent values of the embedding parameters. Differential transformation method re-
sults show that series converge rapidly with high accuracy. The results indicate that
the fin tip temperature increases when ambient temperature increases. Conversely,
the fin tip temperature decreases with an increase in the Peclet number, convec-
tion-conduction and radiation-conduction parameters. It is shown that the fin tip
temperature of the exponential profile is higher than the rectangular one. The re-
sults indicate that the numerical data and analytical method are in a good agree-
ment with each other.
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Introduction

In recent years, the heat transport from a moving continuous surface has attracted the

attention of some researchers. This phenomenon is an important problems that occurring in a

number of industrial applications. Extrusion, hot rolling, glass fiber drawing and casting are ex-

ample of continuous moving surface. In industrial processes, control of cooling rate of the sheets

(or the fibers) is very important to obtain a desired material structure. These types of problems

have a solution substantially different from that of a boundary layer flow over a semi-infinite

plate. The velocity of moving material is related to its application. For example the velocity of

the material can be extremely low (few centimeters per hour) such in crystal growth or very fast

(few meters per second) as in optical fiber drawing. Flow and heat transfer in boundary layer on

a continuous moving surface have been studied by some researchers. The new class of boundary

layer flow over a moving surface was first introduced by Sakiadis [1]. He studied the momentum

transfer occurring when a flat surface continuously moves through a quiescent fluid at the con-

stant surface velocity. Erickson et al. [2] developed this problem to the case with suction and

blowing at the moving surface. The next researches in literature covering surface mass transfer,
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Newtonian and non-Newtonian fluid, magnetic and electric effects, different thermal boundary

conditions, combined free and force convection, combined convection and radiation heat trans-

fer, etc.

Cortell [3] studied heat transfer in a moving fluid over a moving surface numerically

by means of a fourth-order Rung-Kutta method. Ephraim and Abraham [4] investigated the

streamwise variation of the temperature of a moving sheet in the presence of moving fluid. They

applied an iterative method for solving boundary layer equations. Their solution does not de-

pend on the properties of sheet and fluid. Ming et al. [5] studied conjugate heat transfer from a

continuous, moving flat plate numerically by employing the cubic spline collocation. They in-

vestigated effects of Prandtl number, the convection-conduction parameters and the Peclet num-

ber on the heat transfer from a continuous, moving plate. The investigation of mixed convection

heat transfer along a continuously moving heated vertical plate with suction and blowing was

carried out by Al-Sanea [6]. He applied the finite volume method to solve boundary layer equa-

tions. He used the published results available under special condition to validate numerical data,

and the comparison indicated an excellent agreement. The buoyancy force and thermal radiation

effects in magnetohydodynamics (MHD) boundary layer visco-elastic fluid flow over continu-

ously moving surface were performed by Abel et al. [7]. Lee and Tsai [8] studied cooling of a

continuous moving sheet of finite thickness. The effect of the buoyancy force is also taken into

account. They obtained the temperature distribution along the solid-fluid interface by solving

numerically a conjugate heat transfer problem that consists of heat conduction inside the sheet

and induced mixed convection adjacent to the sheet surface. Other conjugate convection-con-

duction researches have been presented by Choudhry and Jaluria [9], and Mendez and Trevino

[10], among others. The heat transfer of a moving material in a non-Newtonian fluid was first

studied by Fox et al. [11]. They applied an exact solution for boundary layer equations. Howell

et al. [12] studied heat transfer on a continuous moving plate in non-Newtonian power law fluid.

They applied Merk-Chao series expansion to generate ordinary differential equation from the

partial differential momentum and heat transfer equations in order to obtain universal velocity

and temperature functions. Torabi et al. [13] investigated convective-radiative non-Fourier heat

conduction with variable coefficients by employing homotopy perturbation method (HPM)

Some of the other studies that investigated the heat transfer of a continuous moving material in

power law fluid have been reported by Sahu et al. [14] and, Zheng and Zhang [15].

Temperature distribution for annual fins with temperature-dependent thermal conduc-

tivity was studied by Ganji et al. [16]. They employed HPM for solving governing equation. The

effects of temperature-dependent thermal conductivity of a moving fin and added radiative com-

ponent to the surface heat loss have been studied by Aziz and Khani [17]. As has been men-

tioned in [17], these improvements have not been pursued in the literature. They applied the

homotopy analysis method (HAM) to solve governing equations. They compared the analytical

and numerical results to each other and observed an excellent agreement.

The aim of this study is obtaining an analytical solution for temperature distribution of

a moving fin with temperature-dependent thermal conductivity. The effect of the thermal radia-

tion is also considered here. With the inclusion of radiation and variable thermal conductivity,

three new parameters, in addition to the Peclet number and Biot number, emerge, namely a ther-

mal conductivity parameter, a radiation-conduction parameter and an environment temperature

parameter. The effect of the embedding parameters on the temperature distribution is shown in

the moving material. The discrepancy of present study with Aziz's research [17] is that in this

study two different profiles (rectangular and exponential profiles) are considered for moving

fin. As well as the differential transformation method (DTM) is applied to solve non-linear prob-
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lem analytically. To validate analytical results, the obtained DTM results are compared with nu-

merical data that are obtained by the fourth-order Rung-Kutta method.

The concept of DTM was first introduced by Zhou [18] in 1986 and it was used to

solve both linear and non-linear initial value problems in electric circuit analysis. The main ben-

efit of this method is that it can be used directly for linear and non-linear differential equation

without requiring linearization, discretization, or perturbation. The DTM has been regarded by

many researchers, Rashidi and Erfani [19] used of DTM for solving Burger's equation and heat

conduction problem in fin with temperature dependent thermal conductivity. Joneidi et al. [20]

applied DTM to determine fin efficiency of convective straight fins with temperature dependent

thermal conductivity. Moradi and Ahmadikia [21] applied the DTM to solve the energy equa-

tion for a fin with three different profiles and temperature-dependent thermal conductivity. The

new algorithm to calculate one and 2-D differential transform of non-linear functions was pre-

sented by Chang and Chang [22, 23]. Jang [24] solved the linear and non-linear initial value

problems by the projected DTM, that this method can be easily applied to the initial value prob-

lem by less computational work. The novel analytical method, namely DTM-Pade to solve

MHD stagnation-point flow in porous media with heat transfer was presented by Rashidi and

Erfani [25]. When there is an infinite boundary in the problem, the DTM could not to obtain the

accurate solution. Because of the Pade approximation is employed to solve problem. Comple-

mentary information about this method has been presented in [26].

Fundamentals of DTM

Consider the analytic function y(t) in a domain D where t = ti represent any point in it.

The function y(t) is represented by a power series at center ti. The Taylor series expansion func-

tion of y(t) is in the following form [20]:
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The particular case of eq. (1) is when ti = 0 and is referred to as the Maclaurin series of

y(t) expressed as:
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As explained by Franco [27], differential transformation of the function y(t) is defined

as:
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where y(t) is the original function and Y(j) is the transformed function. The differential spectrum

of Y(j) is confined within the interval t
[0, H] where H is a constant. The differential inverse

transform of Y(j) is defined as:
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Some of the original functions and transformed functions are shown in tab. 1. It is clear

that the concept of differential transformation is the Taylor series expansion. For the solution

with higher accuracy, more terms in the series in eq. (4) should be retained.
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Table 1. The fundamental operations of differential transform method

Original function Transformed function
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Mathematical formulation

Consider a moving fin of the length L, with a cross-section area A(x) while it moves

horizontally with a constant velocity U as depicted in fig. 1. Fin surface is exposed to a convec-

tive and radiative environment at temperature Ta and the base temperature of fin is Tb > Ta. The

local heat transfer coefficient h along the fin surface is constant and the surface of the moving fin

is assumed to be gray and diffuse with constant emissivity e. The role of radiation component

could be more sensible if the force convection is weal or absent or when only natural convection

occurs. Since the material undergoing the treatment experience a large change in its temperature

during thermal process, the thermal conductivity of the material could not be constant. For most

materials, the thermal conductivity varies with the temperature linearly. The 1-D steady-state

energy equation for the fin moving with a constant speed and losing heat by simultaneous con-

vection and radiation can be expressed as:
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where p is the periphery of the fin, Ta – the ambient temperature, e – the emissivity, s – the

Boltzman constant, r – the density of the material, c – the specific heat, and k(T) is defined as:
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Figure 1. Schematic of different moving fin profiles



k(T) = kb[1 + l(T – Ta)] (6)

where, kb is the fin thermal conductivity at ambient temperature, and l is a constant.

The fin profile is defined according to variation of the fin thickness along its extended

length. For example, the cross-section area of the fin may vary as:

A(x) = bt(x) (7)

where b is the width of the fin, and t(x) – the fin thickness along the length. The t(x) for different

profiles can be defined as:
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– for exponential profile

by employing the following dimensionless parameters:
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where Ab is the base area, Nc – the convection-conduction parameter (more popularly known as

the Biot number), Nr – the radiation-conduction parameter, a – the thermal diffusivity of fin and

Pe – the Peclet number which represent the dimensionless speed of the moving fin and Pe = 0

represents a stationary fin. Thus, the energy equation for two profiles are reduces to:

– the rectangular profile
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– the exponential profile
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where a = lTb in which Tb is the base temperature and fin tip is insulated. Therefore, boundary

conditions for this problem are defined as:

X
X

� �0 0
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X = 1 q = 1 (13)

Solution by differential transformation method

The 1-D transform of eqs. (10), and (11) considered by using the related definition in

tab. 1, we have:

– rectangular profile
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– exponential profile
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In the above equations Q(j) is transformed function of q(X). The transformed boundary

condition takes the form:

Q(1) = 0 (16)
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Supposing Q(0) = b and using eqs. (16) and (17), another value of Q(i) for two profiles

can be calculated. The value of can be calculated using the eq. (17). Thus end up having the fol-

lowing:

– rectangular profile
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– exponential profile
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By substituting eqs. (18) in eq. (4), for H = 1, we can obtain the closed form of the so-

lution:
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– rectangular profile
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In order to obtain the value b we used eq. (17). Then we will have:
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Solving eq. (21) by MATHEMATICA software, gives the value of b. For the exponen-

tial profile the same process is used to obtain the value of b and temperature distribution.

Results and discussions

The analytical results are shown for 50 terms of the final power series here. The effect

of thermal conductivity parameter a on the temperature distribution for both rectangular and ex-

ponential (g = 1) profiles is shown in fig. 2 for Nc = 4, N2 = 4, Pe = 3, and qa = 0.2 . The bottom

line (a = 0) represent the constant thermal con-

ductivity for the rectangular profile. As shown

in fig. 2, with an increase in the thermal conduc-

tivity parameter a, the fin tip temperature in-

creases as well. The fin tip temperature for the

exponential profile is higher than the rectangu-

lar one. For validating DTM results, the analyti-

cal solution is compared with the numerical so-

lution which is obtained by the fourth-order

Rung- -Kutta scheme. Figures 3 and 4 show that

how the temperature distributions of fin are af-

fected by the changes in the convection-con-

duction parameter for rectangular and exponen-

tial (g = 1) profiles, respectively, when Nr =

0.25, a = 1, Pe = 2 and qa = 0.5. As depicted in

figs. 3 and 4, when the convection-conduction

parameter increases, the losing heat of the fin by

convection gets stronger, the cooling becomes

more effective, thus the temperature of fin de-

crease.
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Figure 2. Temperature profile for the
rectangular and exponential (g = 1) profiles for
different values of a when: Nc = 4, Nr = 4,
Pe = 3, and qa = 0.2



The effect of radiation-conduction parameter on the temperature profiles for rectangu-

lar and exponential (g = 0.5) profiles are shown in figs. 5 and 6, respectively, with the rest of the

parameters fixed at Nc = 0.25, a = 0.4, Pe = 1.5, and qa = 0.3. With an increase in the radia-

tion-conduction parameter as the convection-conduction parameter, the radiative transfer be-

comes stronger, thus as shown in figs. 3 and 4, the fin temperature decreases. Figure 7 depicts

the temperature profiles for both rectangular and exponential (g = 0.5) profiles when the ambient

temperature is 0.2, 0.4, 0.6, and 0.8. The other parameters are fixed at Nc = 4, Nr = 4, a = 0.2,

and Pe = 3. As shown in fig. 7, when the ambient temperature increases, the temperature differ-

ence between the fin and ambient temperature becomes shorter. Consequently, the fin tempera-

ture increases. As illustrated, the obtained fin temperature for the exponential profile is higher
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Figure 5. Temperature distribution of the
rectangular profile for different values of Nr

when: Nc = 0.5, a = 0.4, Pe = 1.5, and qa =0.3

Figure 6. Temperature distribution of the
exponential profile (g = 0.5) for different values
of Nr when: Nc = 0.5, a = 0.4, Pe = 1.5, and qa

Figure 3. Temperature distribution of the
rectangular profile for different values of Nc

when: Nr = 0.25, a = 1, Pe = 2, and qa = 0.5

Figure 4. Temperature distribution of the
exponential profile (g = 1) for different values of
Nc when: Nr = 0.25, a = 1, Pe = 2, and qa = 0.5



than in the rectangular one. While the discrepancy between rectangular and exponential profiles

becomes shorter for the larger values of ambient temperature (see fig. 7). The effect of the expo-

nential parameter on the temperature profile is illustrated in fig. 8 when Nc = 2, Nr = 2, a = 0.4,

Pe = 2, and qa = 0.5. As the exponential parameter becomes larger, the fin temperature increases.

The results indicate that for positive values of the exponential parameter, the fin temperature of

exponential profile is larger the rectangular one. While for the negative values of the exponen-

tial parameter, this result is reverse. The effect of the Peclet number (dimensionless speed) on

the temperature distribution for both rectangu-

lar and exponential (g = 0.3) profiles is shown

in fig. 9 with the remaining parameters fixed at

Nc = 0.25, Nr = 1, a = 0.6, and qa = 0.6.

With an increase in the Peclet number, the

losing heat form fin surface becomes stronger,

thus the fin temperature decreases. The compar-

ison between DTM and numerical results for

both profiles when Nc = 1.5, Nr = 0.5, a = 0.5,

and Pe = 1.5 is shown in tab. 2. In all figures and

tab. 2, the agreement between analytical and

numerical results is observed that it confirms

the accuracy of the differential transformation

method to solve non-linear boundary value

problems.

Conclusions

In this study, the differential transformation

method was applied to solve simultaneous con-
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Figure 7. Temperature distribution for the
rectangular and exponential (g = 0.5) profiles for
different values of qa when: Nc = 0.5, Nr = 4,
a = 0.4, and Pe = 3

Figure 8. Temperature distribution for different
values of exponential parameter when: Nc = 2,
Nr = 2, a = 0.4, Pe = 2, and qa = 0.5

Figure 9. Temperature distribution for the
rectangular and exponential (g= 0.3) profiles for
different values of Peclet number when:
Nc = 0.25, Nr = 1, a = 0.6, and qa = 0.6



vection and radiation heat transfer problem in a continuously moving fin with temperature ther-

mal conductivity. The rectangular and exponential profiles were considered for a moving fin.

This method has been applied for the linear and non-linear differential equations. This method is

an infinite power-series form and has high accuracy and fast convergence. To validate the ana-

lytical results, DTM results are compared with numerical data obtained using the fourth order

Runge-Kutta method. The results illustrate how the temperature distributions in the moving fin

are affected by the changes in the embedding parameters. The results indicate that the fin tem-

perature increases with an increase in the exponential parameter as well as the fin temperature of

exponential profile for the positive values of exponential parameter is larger than the rectangu-

lar one. In general, DTM has a good approximate analytical solution for the linear and non-lin-

ear engineering problems without any assumption and linearization.
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Table 2. Comparison between analytical and numerical results for both the rectangular and exponential
profile when: Nc = 1.5, Nr = 0.5, Pe = 1.5, a = 0.5, and qa =0.3

X

Rectangular profile
Exponential profile

g = 1 g = –1

q(X)
DTM

q(X)
N-S

q(X)
DTM

q(X)
N-S

q(X)
DTM

q(X)
N-S

0 0.6087817 0.6087816 0.731148 0.7328734 0.480268 0.4786148

0.1 0.6111722 0.611172 0.73430151 0.7360088 0.4817751 0.4801234

0.2 0.6188068 0.6188067 0.74348468 0.7451388 0.4870606 0.4854151

0.3 0.6324888 0.6324887 0.75834274 0.7599093 0.4975721 0.4959404

0.4 0.6531764 0.6531763 0.77858166 0.7800266 0.5152683 0.5136639

0.5 0.6819939 0.6819938 0.80394739 0.8052367 0.5427909 0.5412371

0.6 0.7202402 0.7202402 0.83421062 0.8353101 0.583679 0.5822145

0.7 0.7693942 0.7693942 0.8691558 0.8700314 0.6426316 0.64132

0.8 0.8311216 0.8311216 0.90857383 0.9091914 0.7258297 0.7247716

0.9 0.9072892 0.9072893 0.95225757 0.9525833 0.8413691 0.8407204

1 1 1 1 1 1 1

Nomenclature

A(x) – fin cross-section, [m2]
a – thermal expansion coefficient, [K–1]
b – width of the fin
c – specific heat, [Jkg–1K–1]
H – constant
h – heat transfer coefficient, [Wm–2K–1]
k – thermal conductivity, [Wm–1K–1]
L – fin length, [m]
Nc – convection-conduction fin parameter

– (= hpL2/KbAb), [–]
Nr – radiation-conduction fin parameter

– (= espL2
T

b
3/kbAb), [–]

p – periphery of the fin cross-section, [m]
Pe – Peclet number (= UL/a) , [–]
T – temperature, [K]
t – fin thickness, [m]
U – velocity of fin, [ms–1]

X – non-dimensional space co-ordinate
x – dimensional space co-ordinate, [m]
Y – transformed function
y(t) – original analytic function

Greek symbols

a – thermal diffusivity (= kb/rc ), [m2s–1]
g – exponential parameter
e – emissivity
l – dimensional constant, [K–1]
Q – transformed temperature
q – dimensionless temperature
r – density, [kgm–3]
s – Stefan-Boltzmann constant, [Wm2K–4]

Subscripts

a – ambient property
b – fin base



References

[1] Sakiadis, B. C., Boundary-Layer Behaviour on Continuous Solid Surface: I. Boundary Layer Equations
for Two Dimensional and Axisymmetric Flow, AICHE. J., 7 (1961), 1, pp. 26-28

[2] Erickson, L. E., et al., Heat and Mass Transfer on a Continuous Moving Flat Plate with Suction or Injec-
tion, Ind. Eng. Chem. Fund., 5 (1966), pp. 19-25

[3] Cortell, R., Flow and Heat Transfer in a Moving Fluid over a Moving Flat Surface, Theoretical and Com-
putational Fluid Dynamics, 21 (2007), 6, pp. 435-446

[4] Sparrow, E. M., Abraham, J. P., Universal Solutions for the Streamwise Variation of the Temperature of a
Moving Sheet in the Presence of a Moving Fluid, Int. J. Heat Mass Transfer, 48 ( 2005), 15, pp. 3047-3056

[5] Char, M. I., Chen, C. K., Cleaver, J. W., Conjugate Force Convection Heat Transfer from a Continuous,
Moving Flat Sheet, Int. J. Heat and Fluid Flow, 11 (1990), 3, pp. 257-261

[6] Al-Sanea, S. A., Mixed Convection Heat Transfer along a Continuously Moving Heated Vertical Plate
with Suction or Injection, Int. J. Heat Mass Transfer, 47 (2004), 6-7, pp. 1445-1465

[7] Abel, S., Prasad, K. V., Mahaboob, A., Buoyancy Force and Thermal Radiation Effects in MHD Boundary
Layer Visco-Elastic Fluid Flow over Continuously Moving Stretching Surface, Int. J. Thermal Science, 44
(2005), 5, pp. 465-476

[8] Lee, S. L., Tsai, J. S., Cooling of a Continuous Moving Sheet of Finite Thickness in the Presence of Natural
Convection, Int. J. Heat Mass Transfer, 33 (1990), 3, pp. 457-464

[9] Choudhury, S. R., Jaluria, Y., Forced Convective Heat Transfer from a Continuously Moving Heated Cy-
lindrical Rod in Material Processing, ASME Journal of Heat Transfer, 116 (1994), 3, pp. 724-734

[10] Mendez, F., Trevino, C., Heat Transfer Analysis on a Moving Flat Sheet Emerging into a Quiescent Fluid,
J. Thermophysics and Heat Transfer, 16 (2002), 4, pp. 373-378

[11] Fox, V. G., et al., The Laminar Boundary Layer on a Moving Continuous Flat Sheet Immersed in a
Non-Newtonian Fluid, AICHE. J., 15 (1969), 3, pp. 327-333

[12] Howell, T. G., et al., Momentum and Heat Transfer on a Continuous Moving Surface in a Power Law
Fluid, Int. J. Heat Mass Transfer, 40 (1997), 8, pp. 1853-1861

[13] Torabi, M., et al., Assessment of Homotopy Perturbation Method in Nonlinear Convective-Radiative
Non-Fourier Conduction Heat Transfer Equation with Variable Coefficient, Thermal Science,15 (2011)
Suppl. 2, pp. S263-S274

[14] Sahu, A. K., et al., Momentum and Heat Transfer from a Continuous Surface to a Power-Law Fluid, Acta
Mechanica, 142 (2000), 1-4, pp. 119-131

[15] Zheng, L. C., Zhang, X. X., Skin Friction and Heat Transfer in Power-Law Fluid Laminar Boundary Layer
along a Moving Surface, Int. J. Heat Mass Transfer, 45 (2002), 13, pp. 2667-2672

[16] Ganji, D. D., et al., Determination of Temperature Distribution for Annual Fins with Temperature-De-
pendent Thermal Conductivity by HPM, Thermal Science, 15 (2011), 1, pp. 111-115

[17] Aziz, A., Khani, F., Convection-Radiation from a Continuously Moving Fin of a Variable Thermal Con-
ductivity, Journal of the Franklin Institute, 348 (2011), 4, pp. 640-651

[18] Zhou, J. K., Differential Transformation Method and Its Application for Electrical Circuits, Hauzhang
University press, Wuhan, China, 1986

[19] Rashidi, M. M., Erfani, E., New Analytical Method for Solving Burgers, and Nonlinear Heat Transfer
Equation and Comparison with HAM, Comput. Phys. Commun., 180 (2009), 9, pp. 1539-1544

[20] Joneidi, A. A., et al., Differential Transformation Method to Determine Fin Efficiency of Convective
Straight Fins with Temperature Dependent Thermal Conductivity, Int. Commun. Heat Mass Transfer, 36
(2009), 7, pp. 757-762

[21] Moradi, A., Ahmadikia, H., Analytical Solution for Different Profiles of Fin with Temperature-Dependent
Thermal Conductivity, Mathematical Problems in Engineering, 2010 (2010), ID 568263, pp. 1-15

[22] Chang, S. H., Chang, I. L., A New Algorithm for Calculating One-Dimensional Differential Transforma-
tion of Nonlinear Functions, Appl. Math. Comput., 195 (2008), 2, pp. 799-808

[23] Chang, S. H., Chang, I. L., A New Algorithm for Calculating Two-Dimensional Differential Transforma-
tion of Nonlinear Functions, Appl. Math. Comput., 215 (2009), 7, pp. 2486-2494

[24] Jang, B., Solving Linear and Nonlinear Initial Value Problems by the Projected Differential Transform
Method, Comput. Phys. Commun., 181 (2010), 5, pp. 848-854

[25] Rashidi, M. M., Erfani, E., A New Analytical Study of MHD Stagnation-Point Flow in Porous Medium
with Heat Transfer, Computer&Fluid, 40 (2011), 1, pp. 172-178

Moradi, A., Rafiee, R.: Analytical Solution to Convection-Radiation of a Continuously ...
THERMAL SCIENCE: Year 2013, Vol. 17, No. 4, pp. 1049-1060 1059



[26] Rashidi, M. M., The Modified Differential Method for Solving MHD Boundary-Layer Equations, Comp.
Phys. Commun., 180 (2009), 11, pp. 2210-2217

[27] Franco, A., An Analytic Method for the Optimum Thermal Design of Convective Longitudinal Fin Arrays,
Heat Mass Transfer, 45 (2009), 12, pp. 1503-1517

Paper submitted: April 25, 2011
Paper revise: January 5, 2012
Paper accepted: January 5, 2012

Moradi, A., Rafiee, R.: Analytical Solution to Convection-Radiation of a Continuously ...
1060 THERMAL SCIENCE: Year 2013, Vol. 17, No. 4, pp. 1049-1060


