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A Diesel cycle heat engine with internal and external irreversibilities of heat 
transfer and friction, in which the finite rate of combustion is considered and 
the heat transfer between the working fluid and the environment obeys 
Newton’s heat transfer law [ ( )q T≈ ∆ ], is studied in this paper. Optimal piston 
motion trajectories for minimizing entropy generation per cycle are derived 
for the fixed total cycle time and fuel consumed per cycle. Optimal control 
theory is applied to determine the optimal piston motion trajectories for the 
cases of with piston acceleration constraint on each stroke and the optimal 
distribution of the total cycle time among the strokes. The optimal piston 
motion with acceleration constraint for each stroke consists of three segments, 
including initial maximum acceleration and final maximum deceleration 
boundary segments, respectively. Numerical examples for optimal 
configurations are provided, and the results obtained are compared with those 
obtained when maximizing the work output with Newton’s heat transfer law. 
The results also show that optimizing the piston motion trajectories could 
reduce engine entropy generation by more than 20% . This is primarily due to 
the decrease in entropy generation caused by heat transfer loss on the initial 
portion of the power stroke. 
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1. Introduction 
 

Since the efficiency bound of a Carnot engine at maximum power output was derived by 
Curzon and Ahlborn [1], much work [2-14] has been performed in the field of finite-time 
thermodynamics. The study on the optimal paths of piston motion for internal combustion engines 
with different optimization objectives and heat transfer laws mainly includes the following two 
aspects. 

 
1.1. The optimal path with Newton’s heat transfer law [ ( )q T≈ ∆ ] 
 

Mozurkewich and Berry [15, 16] investigated a four stroke Otto cycle engine with losses of 
piston friction and heat transfer, in which the heat transfer between the working fluid and the cylinder 
wall obeys Newton’s heat transfer law [ ( )q T≈ ∆ ]. The optimal piston trajectory for maximizing the 
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work output per cycle was derived for the fixed total cycle time and fuel consumed per cycle. The 
results showed that optimizing the piston motion could improve engine efficiency by nearly 10%. 
Hoffmann and Berry [17] further considered the effect of the finite combustion rate of the fuel on the 
performance of engines, and studied the optimal piston motion of a four stroke Diesel cycle engine for 
maximum work output with losses of piston friction and heat transfer, in which the heat transfer 
between the working fluid and the cylinder wall also obeys the Newton’s heat transfer law. Blaudeck 
and Hoffman [18] studied the optimal path of a four stroke Diesel cycle with the Newton’s heat 
transfer law by using Monte Carlo simulation. Teh et al. [19-21] investigated the optimal piston 
motions of internal combustion engines for maximum work output [19] and maximum efficiency [20, 
21] when the chemical reaction loss and heat leakage are the main losses of internal combustion 
engine. By excluding the entropy generation due to friction loss, heat transfer loss and pressure drop 
loss in practical internal combustion engine, Teh et al. [22, 23] isolated combustion as the sole source 
of entropy generation and investigated the optimal piston motion of an adiabatic internal combustion 
engine for minimum entropy generation [22] as well as the optimal piston motion for minimum 
entropy generation with fixed compression ratio [23]. Based on the heat engine models established in 
Refs. [15, 16], Ge et al. [24] further considered the entropy generation which was not included in Refs. 
[22, 23], derived the optimal piston motion trajectories of Otto cycle for minimizing entropy 
generation due to friction loss, heat transfer loss and pressure drop loss when the heat transfer between 
the working fluid and the environment obeyed Newton’s heat transfer law, and compared the results 
obtained with those obtained for maximizing the work output with Newton’s heat transfer laws [15, 
16]. 

Band et al [25, 26] studied optimal configuration of irreversible expansion process for 
maximum work output obtained from an ideal gas inside a cylinder with a movable piston when the 
heat transfer between the gas and the bath obeyed Newton’s heat transfer law, and discussed the 
optimal configurations of the expansion subjected to eight different constraints, including constrained 
rate of change of volume, unconstrained final volume, constrained final energy and final volume, 
constrained final energy and unconstrained final volume, consideration of piston friction, 
consideration of piston mass, consideration of gas mass and unconstrained total process time, 
respectively. Salamon et al [27] and Aizenbud and Band [28] used the results obtained in Refs. [25, 26] 
to further investigate the optimal configurations of the expansion process for maximizing power 
output [27] and the optimal configurations for maximizing work output with fixed power output [28] 
with Newton’s heat transfer law. Aizenbud et al [29] and Band et al [30] further applied the results 
obtained in Refs. [25, 26] to optimize the configurations of internal [29] and external [30] combustion 
engines with Newton’s heat transfer law, respectively. 

 
1.2. The effect of heat transfer law on the optimal path of cycle 
 

In general, heat transfer is not necessarily Newtonian and also obeys other laws; heat transfer 
law has the significant influence on the optimal configuration of heat engine cycles. Burzler and 
Hoffman [31, 32] considered the effects of convective-radiative heat transfer law [ 4( ) ( )q T T≈ ∆ + ∆ ] 
and non-ideal working fluid, and derived the optimal piston motion for maximizing power output 
during the compression and power strokes of a four stroke Diesel engine. Xia et al [33] studied the 
optimal piston trajectory of the Otto cycle engine for maximizing work output with fixed total cycle 



 2

time, the fixed fuel consumed per cycle and linear phenomenological heat transfer law [ 1( )q T −≈ ∆ ] in 
the heat transfer process between working fluid and the environment, and the results showed that 
optimizing the piston motion could improve work output and efficiency of the engine by more 
than 9% .  

Based on the heat engine models established in Refs. [15, 16, 33], Ge et al [24, 34] derived the 
optimal piston motion trajectories of Otto cycle for minimizing entropy generation due to friction loss, 
heat transfer loss and pressure drop loss when the heat transfer between the working fluid and the 
environment obeys linear phenomenological [24] and radiative [34] heat transfer laws, and compared 
the results obtained with those obtained for maximizing the work output with Newton’s [15, 16] and 
linear phenomenological [33] heat transfer laws. 

On the basis of Ref. [26], Chen et al [35] determined the optimal configurations of expansion 
process of a heated working fluid in the piston cylinder with the linear phenomenological heat transfer 
law. Song et al [36] and Chen et al [37] used the results obtained in Ref. [35] to optimize the 
configuration of external [36] and internal [37] combustion engines with linear phenomenological heat 
transfer law. Song et al [38], Ma et al [39] and Chen et al [40] determined the optimal configurations 
of expansion process of a heated working fluid in the piston cylinder with the generalized radiative 
[ ( )nq T∝ ∆ ] [38], Dulong-Petit [ 5 / 4( )q T∝ ∆ ][39] and convective-radiative [40] heat transfer laws, 
obtained the first-order approximate analytical solutions about the Euler-Lagrange arcs by means of 
Taylor series expansion. Ma et al [41, 42] repeated the investigation on the optimal configurations of 
expansion process with the generalized radiative heat transfer law by means of elimination method. 
Ma et al [41, 43] used the results obtained in Refs. [41, 42] to optimize the configuration of external 
combustion engine with radiative [ 4( )q T≈ ∆ ] [41, 43], generalized radiative [43] and convective- 
radiative [41] heat transfer laws, respectively. Chen et al [44] considered the effects of piston motion 
on the heat conductance, established a model closer to practical expansion process of heated working 
fluid with the generalized radiative heat transfer law and time-dependent heat conductance, and 
determined optimal configuration of expansion process for maximum work output. 

Based on Refs. [17, 24], this work studies the optimal piston trajectory of the Diesel cycle 
engine for minimizing entropy generation per cycle with the finite rate of combustion, the fixed total 
cycle time, the fixed fuel consumed per cycle and Newton’s heat transfer law in the heat transfer 
process between working fluid and environment, and the results obtained are compared with those 
obtained for maximizing the work output with the Newton’s heat transfer law [17]. 

 
2. Diesel cycle engine model 
 

In order to analyze practical Diesel cycle, some assumptions are made: (1) the fixed fuel 
consumed per cycle is equivalent to the given initial working fluid temperature on the power stroke; (2) 
the working fluid in the cylinder consists of an ideal gas which is in internal equilibrium all the time; 
and (3) the major losses in real internal combustion engine and the piston motion of the conventional 
engine are simplified and described qualitatively and quantitatively below according to Refs.[15-18, 
24, 33, 45, 46]. 

 
2.1. Finite combustion rate [17] 
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In the modern Diesel cycle engine, fuel is injected into the cylinder at the end of the 
compression stroke and evaporates in the hot compressed air. After a short delay, part of the injected 
fuel is ignited and burned rapidly. The remaining fuel burns relative slowly as it evaporates and 
diffuses into oxygen-rich regions where combustion can be sustained. In moderately and heavily 
loaded engines, the combustion process will continue until the end of the power stroke. 

The finite combustion rate is one of the main features of a Diesel engine and can be 
approximated by the following time-dependent function which describes the extent of the reaction [17] 

( ) (1 )[1 exp( / )]bG t F F t t= + − − −                                (1) 
where F  is the fraction of the fuel charge consumed in the initial instantaneous burn, and bt  is the 
burn time during which most of the combustion occurs. For the corresponding heating function ( )h t , 
one has 

( ) ( )ch t NQ G t= &                                      (2) 

where cQ  is the heat of combustion per molar fuel-air mixture charge. cQ  is assumed to be 
temperature independent.  

The mole number N  and heat capacity C  are assumed to be influenced by the extent of the 
combustion reaction within the piston chamber. This dependence can be expressed as [17] 

( ) ( ) ( )i f iN N t N N N G t= = + −                                (3) 

( ) ( ) ( )i f iC C t C C C G t= = + −                                 (4) 

The subscripts i  and f  refer to conditions at 0G =  and 1G = , respectively. Furthermore, 
the heat capacities of the reactants and products are temperature independent. 

 
2.2. Loss terms [15-18, 24, 33, 45] 
 

For the Diesel cycle, the major losses are as follows: (1) friction, (2) pressure drop, (3) heat 
leakage, (4) fuel injection, (5) incomplete combustion, and (6) exhaust blowdown. The non-negligible 
losses from this list are cast into simplified functional forms and incorporated into this model. This 
approach reproduces the Diesel engine’s salient features in a flexible, easily decipherable model. 

 
2.2.1. Friction loss 
 

Friction force is assumed to be proportional to the piston velocity v [15-18, 24, 33], the 
frictional work fW  in a stroke taking time t  is expressed as  

2t

f o
W v dtµ= ∫                                       (5) 

Due to greater pressure on the piston, the value of friction coefficient is usually about twice as 
large on the power stroke as on the other strokes. If the friction coefficient on the nonpower stroke is 
µ , the friction coefficient on the power stroke will be 2µ [15-18, 24, 33]. 

 
2.2.2. Pressure drop 
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There is an additional friction-like loss term on the intake stroke. This is due to the pressure 
differential that develops, due to viscosity, as the gas flows through the inlet valve. The pressure 
differential is proportional to velocity, so it may be included in the friction term for the intake stroke, 
and then the friction coefficient on the intake stroke is assumed to be 3µ [15-18, 24, 33].  

 
2.2.3. Heat leakage 

 
Loss due to heat transfer from the working fluid to cylinder walls typically cost about 12%  of 

the total power [45]. The same as Refs. [15-18, 24], the heat transfer between the working fluid and 
the environment obeys Newton’s heat transfer law. The heat transfer expression used here assumes that 
the rate is linear in the inside surface area of the cylinder and in the difference between the 
temperature of working fluid T  and that of the cylinder wall wT . wT  is assumed to be a constant. 
For heat transfer coefficient k  and cylinder diameter b , the rate of heat leakage at position X (see 
fig. 1) is 

( 2 )( )wQ k b b X T Tπ= + −&                                 (6) 

 
Figure 1. Conventional piston linkage. 

 
The effect of heat transfer is only important on the power stroke. Since the average value of 

( )wT T−  is much smaller on the nonpower stroke, the rate is negligible on them. 
 

2.2.4. Incomplete combustion 
 

If the exhaust valve opens before the burning fuel-air mixture reaches chemical equilibrium, 
there can be minor efficiency losses even in well-adjusted engines operating at normal loads. These 
losses have been included in the model by representing the combustion reaction as the exponential 
function give explicitly in eq. (1) [17]. 

 
2.2.5. Other losses 
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Besides, there are effects of the time loss due to beginning the expansion stroke while 

combustion is still taking place and the exhaust blowdown due to opening the exhaust valve before 
completion of the expansion stroke. They are so small compared with the heat leakage and friction 
losses that they are all negligible [24]. 

 
2.3. Piston motion of a conventional engine [46] 

 
To determine improvements resulting from the optimized piston motion, work output and 

engine efficiencies are calculated for conventional piston trajectories. Piston motion within a 
conventional Diesel engine can be described by 

1 2
2 22 sin cos1 [1 ( ) sin ]X r rv X

l l
π θ θ θ

τ

−
∆ ⎧ ⎫= = + −⎨ ⎬

⎩ ⎭
&                    (8) 

As shown in fig. 1, X  denotes piston position, 2X r∆ = , and 4 tθ π τ= . 0X X=  when 
0t = . The four-stroke cycle period is τ . Pure sinusoidal piston motion occurs when 0r l = . Typical 

/r l  is between 0.16  and 0.40 . Varying the value of /r l  has little effect on the results. 
 

3. Optimization procedure 
 

The optimization problem is minimizing the entropy generation per cycle for fixed fuel 
consumption and total cycle time. Thus, the only difference between the optimized engine and the 
conventional one is in the piston motion. The optimization procedure consists of two parts. The first is 
to determine the optimal trajectory on each stroke. The second is to optimize the distribution of the 
total cycle time among the strokes. A real engine includes power and nonpower strokes. Compared 
with the power stroke, the heat leakage is negligible on the nonpower strokes which include intake, 
compression and exhaust strokes. Therefore, the optimization of these strokes is relatively simple, and 
the three strokes can be treated together to simplify the optimization problem. For the three nonpower 
strokes, at first, the piston path on each stroke is determined with the objective of minimum entropy 
generation, respectively, and then the time allocation among three non-power strokes for a fixed total 
time npt  is determined with the objective of minimum total entropy generation 

nptS∆ . While for the 
power stroke, the piston path is determined with the objective of minimum entropy generation 

ptS∆ when heat transfer loss is considered. For the total cycle, the distribution of the total cycle time τ  
between the total time npt  of nonpower strokes and the power stroke time pt  is determined with the 
objective of minimum entropy generation S∆  per cycle.  

 
3.1. Optimization for nonpower strokes  
 

The optimal process of nonpower strokes is the same as Ref. [24]. After optimization, the total 
entropy generation on nonpower strokes is 

2 3 2 3 2
1 1 1 2 2 2 0[2 (1 2 )(1 ) 3 (1 2 )(1 ) ] (12 )

npt mS a t y y t y y Tµ∆ = + − + + −                 (9) 

For a given value of nonpower stroke time npt , the optimal allocation of the nonpower stroke 
time is determined by following two equations 
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1 22npt t t= +                                      (10) 

2 2 2 2
1 1 2 2(1 ) 3 (1 )t y t y− = −                                  (11) 

where 2 1/2
1 1(1 4 / )my X a t= − ∆ , 2 1 2

2 2(1 4 )my X a t= − ∆  and ma  is the value of constrained acceleration. 
For the case without constraint on acceleration, i.e. ma →∞ , eq. (11) becomes 

2 13t t=                                       (12) 

And the total entropy generation, from eq. (9), is 
2 2

0(2 3) ( ) ( )
npt npS X t Tµ∆ = + ∆                             (13) 

 
3.2. Optimization for power stroke  
 

Different from the optimization of the nonpower strokes, in which only the friction loss is 
considered, the optimization of the power stroke will consider the effects of heat transfer on the 
optimal piston trajectory. So, the entropy generation in power stroke is due to friction loss and heat 
transfer loss, and which can be expressed as , pf tS∆ and , pq tS∆ , respectively.  

2

0
,

0

2p

p

t

f t

v dt
S

T

µ
∆ = ∫                                   (14) 

0
,

0

( 2 )( )p

p

t

w

q t

k b b X T T dt
S

T

π + −
∆ = ∫                              (15) 

 
3.2.1. Power stroke with unconstrained acceleration 
 

In order to obtain the minimum entropy generation during the power stroke, the corresponding 
optimization problem becomes 

2

0
, ,

0

[2 ( 2 )( )]
min

p

p p p

t

w

t f t q t

v k b b X T T dt
S S S

T

µ π+ + −
∆ = ∆ + ∆ = ∫                   (16) 

In terms of the first law of thermodynamics, one has 
1 [ ( )( ) ( )]

2 w

NRTv bT k b X T T h t
NC X

π= − + + − −&                        (17) 

where R  is the gas constant. The rate of heat produced during the combustion is described by the 
heating function 

(1 )
( ) exp( )c

b b

NQ F th t
t t
−

= −                               (18) 

Furthermore, there is  
X v=&                                     (19) 

The Hamiltonian for this problem is 
2

1
2

0

2 ( / 2 )( )
[ ( )( ) ( )]

2
w

w

v k b b X T T NRTv bH k b X T T h t v
T NC X

µ π λ
π λ

+ + −
= − + + − − +        (20) 
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The canonical equations are 
1 1

1
0

1( )( )
2

RvH bk b X
T NC T CX

λ λ
λ π∂
= − = + − +

∂
&                       (21) 

1 1
2 2

0

1( )( )w

RTvH k b T T
X NC T CX

λ λ
λ π∂

= − = − − −
∂

&                      (22) 

The extremum condition is / 0H a∂ ∂ = , one has 
0 1 2( )

4
T RT CX

v
CX

λ λ
µ
−

=                                 (23) 

In solving these equations, there are four boundary conditions to be satisfied. They are 

0(0) PT T= , 0(0)X X= , ( )p fX t X= , 1 ( ) 0ptλ =                    (24) 

where 0 pT  is the initial temperature of working fluid on the power stroke. Eqs. (17), (19), (21) and 
(22) determine the optimal solution of this problem, which could be solved for the minimum value of 

ptS∆  as a function of time and the optimal path of piston motion, i.e. optimal relationship between 
piston velocity v  and time t  when the power stroke time pt  is given. 

Furthermore, the initial position of the piston must be constrained, and the piston position 
during the whole power stroke should satisfy the following equation 

0X X≥                                     (25) 
Without the above constraint the piston will move above the top dead center. After constrained 

the piston position, the optimal path of the piston with unconstrained acceleration on the power stroke 
is a two branch path. For  0 dt t≤ ≤ , the velocity of piston is 

( ) 0 v t =                                    (26) 
where dt  is the motion delay time. During the motion delay time dt , the piston position will not 
satisfy the eq. (25), and the piston must keep still. While for d pt t t≤ ≤ , the piston position will satisfy 
the eq. (25), and the velocity of piston will be eq.(23). 

 
3.2.2. Power stroke with constrained acceleration 
 

For the case with constrained acceleration, the piston velocity is required to be zero at both 
start and end points and the acceleration is constrained to lie within finite limits. The optimization 
objective is still to minimize the function given by eq. (16), the differential constraints on the state 
variables T  and X  remain as given in eqs. (17) and (19), respectively. Besides, the dependence of 
the state variable v  on the control variable a  and the inequality constraints on variable a  are 
given by 

v a=&                                       (27) 
m ma a a− ≤ ≤                                    (28) 

The Hamiltonian for this problem is 
2

1
2 3

0

2 ( / 2 )( )
[ ( / 2 )( ) ( )]w

w

v k b b X T T NRTvH k b b X T T h t v a
T NC X

µ π λ
π λ λ

+ + −
= − + + − − + +       (29) 

The canonical equations conjugate to eqs. (17), (19) and (27) are eqs. (21), (22) and 
1

3 2
0

4 RTH v
v T CX

λµλ λ∂
= − = − + −

∂
&                           (30) 

The extremum condition is / 0H a∂ ∂ = , one has  
3 0λ =                                     (31) 
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If eq. (31) holds for more than isolated points between ma−  and ma , one also has  

3 0λ =&                                     (32) 

Eliminating 3λ  by using eqs. (30) and (32), the expression of the velocity is the same as eq. 
(23). On this basis one can conclude that the optimal trajectory with acceleration constraint on the 
power stroke has two cases. The first case is that when the piston motion exists motion delay time dt , 
the optimal trajectory is a three-branch path: (1) From the initial time 0t =  to the motion delay time 

dt t= , the piston keeps still, and the piston position is the initial position. (2) From the motion delay 
time dt t=  to the switch time t t′= , the piston trajectory satisfies the system of eqs. (17), (19), (21) 
and (22). (3) From the switch time t t′=  to the power stroke time pt t= , the piston trajectory is the 
maximum deceleration segment. The second case is that when the piston motion does not exist motion 
delay time dt , i.e. the piston position is 0X X≥ during the whole power stroke time, the optimal 
trajectory is also a three-branch path, i.e. two boundary segments (maximum acceleration and 
maximum deceleration) connected by a segment which satisfies the system of eqs. (17), (19), (21) and 
(22). For these equations, only numerical results could be obtained. 

 
4. Numerical examples and discussions 
 
4.1. Determination of the related constants and parameters 
 

Table 1. Constants and parameters used in the calculations [14] 

Mechanical parameters  

initial position 0 0.5X cm=  

final position 8fX cm=  

cylinder bore 7.98b cm=  

cycle time 33.3msτ = corresponding to 3600 rpm 

Thermodynamic parameters  

number of moles of gas compression stroke 0.0144iN = , power stroke 0.0157fN =  

initial temperature compression stroke 0 329CT K= , power stroke 0 2360PT K=  

constant volume heat capacity compression stroke 2.5iC R= , power stroke 3.35fC R=  

cylinder wall temperature 600wT K=  

Loss term coefficients  

friction coefficient 12.9 /kg sµ =  

heat transfer coefficient 1 21305k W K m− −= ⋅ ⋅  

Heat function parameters  

explosion fraction 0.5F =  

burn time 2.5bt ms=  

heat of combustion 45.75 10 /cQ J mol= ×  per molar fuel-air mixture charge 

Gas constant 1 18.314R J mol K− −= ⋅ ⋅  

 
In order to calculate the entropy generation, the environment temperature 0 300T K=  is set. 
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Other constants and parameters are listed in tab. 1 according to Ref. [17]. 
In the following calculations, maxv  is the maximum velocity of the piston on the power stroke 

and fT  is temperature of working fluid at the end of power stroke. 
 

4.2. Numerical examples for the case with constrained acceleration 
 

The optimal trajectory with constrained acceleration on the power stroke is a three-branch path. 
The system of differential equations for the case with constrained acceleration is solved backwards, i.e. 
taking the final position of the piston as the initiate point of calculation. For the piston motion maybe 
exists motion delay time, the detail calculation method has two cases. 

(1) There is exist the motion delay time of piston motion  
When the time pt  spent on the power stroke is fixed, the first is to calculate the maximum 

deceleration segment. The values of the final temperature fT  and the time spent on the maximum 
deceleration segment 3pt  are guessed, then solving eqs. (17), (19) and (25) for the initial various 
parameters on this segment. The second is to calculate the interior segment. Using the calculation 
results of the former step as the initial values of this step, one can solve the differential equations (17), 
(19), (21) and (22) backwards with the iterative method. 0 0X X− <  is used as the terminate condition 
of the calculating process. The time spent on this segment 2pt  can be obtained, and the motion delay 
time can be written as 3 2d p p pt t t t= − − . The third is to calculate the first segment During the motion 
delay time, the piston position is initial position and velocity keep still, i.e. 0X X=  and 0v = . The 
initial temperature 0PT  can be solved by eq. (17). The resultant value of 0PT  is compared with the 
desired one. The guessed initial value of fT  and the time spent on the maximum deceleration 
segment 3pt  are then modified to minimize the square of the deviation between the resultant and 
desired values, and the entropy generation on the power stroke 

ptS∆  is solved. The fourth is to 
calculate the entropy generation and the time distribution of nonpower strokes. Using the calculation 
result of the time spent on the power stroke pt , one can solve eqs. 1 22np pt t t tτ= − = + , (9) and (11) for 
the entropy generation 

nptS∆  and time distribution of nonpower strokes, and then the total entropy 
generation of the cycle S∆  can be obtained. The fifth is to modify the value of the time spent on the 
power stroke pt , and to repeat the former four steps until all of the values of the time spent on the 
power stroke are calculated. The sixth is to compare the entropy generation per cycle S∆  with 
different values of time spent on the power stroke and to select the minimum S∆ . 

(2) There is not exist the motion delay time of piston motion 
When the time pt  spent on the power stroke is fixed, the first is to calculate the maximum 

deceleration segment. The values of the final temperature fT  and the time spent on the maximum 
deceleration segment 3pt  are guessed, then solving eqs. (17), (19) and (25) for the initial various 
parameters on this segment. The second is to calculate the interior segment. Using the calculation 
results of the former step as the initial values of this step, one can solve the differential equations (17), 
(19), (21) and (22) backwards with the iterative method. The piston velocity on the initial position of 
the interior segment is related to the piston position, which could be a switching point from the interior 
segment to the maximum acceleration segment. The initial parameters and the time spent on this 
segment 2pt  can be obtained. The third is to calculate the maximum acceleration segment. Using the 
calculation results of the former step as the initial values of this step, one can solve eqs. (17), (19) and 
(25) backwards for the initial temperature 0PT  and the time spent on the maximum acceleration 
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segment 1pt . The resultant values of 0PT  and the total time spent on the three segments 1 2 3p p pt t t+ +  
are compared with the desired ones. The guessed initial values of fT  and the time spent on the 
maximum deceleration segment 3pt  are then modified to minimize the square of the deviation 
between the resultants and desired values, and the entropy generation on the power stroke 

ptS∆  is 
solved. The fourth is to calculate the entropy generation and the time distribution of nonpower strokes. 
Using the calculation result of the time spent on the power stroke pt , one can solve eqs. 

1 22np pt t t tτ= − = + , (9) and (11) for the entropy generation 
nptS∆  and time distribution of nonpower 

strokes, and then the total entropy generation of the cycle S∆  can be obtained. The fifth is to modify 
the value of the time spent on the power stroke pt , and to repeat the former four steps until all of the 
values of the time spent on the power stroke are calculated. The sixth is to compare the entropy 
generation per cycle S∆  with different values of time spent on the power stroke and to select the 
minimum S∆ . 

Table 2． Parameters for different cases 

Case Variation from Table 1 

1 none 

2 0.1bt ms=  

3 1.0bt ms=  

4 5.0bt ms=  

5 66.66msτ = ,corresponding to1800rpm  

6 22610 /k W K m= ⋅  

7 25.8 /kg sµ =  

 
Tab. 2 lists some parameters (other parameters unchanged) varied from tab. 1. Tab. 3 lists the 

calculation results for the corresponding cases, where the modified sinusoidal motion ( / 0.25r l = ) is 
chosen as the conventional motion. From tab. 3, one can see that the influences of different choices of 
burn time, friction coefficient, heat leakage coefficient and cycle time on the optimal configurations of 
piston movement. For different cases, the results in tab. 3 show that the peak velocity maxv  is much 
larger than that of with the conventional motion, while the time spent on power stroke pt  with the 
optimal piston motion is smaller than that of with conventional motion, respectively. After 
optimization, the decrease of time spent on the power stroke pt  has two influences. On the one hand, 
with the decrease of pt , the time spent on the nonpower strokes npt  will increase and the mean piston 
velocity during the nonpower strokes will decrease, so the entropy generation due to the friction loss 
on the nonpower strokes will decrease which can be seen from the change of 

nptS∆ in tab. 3. On the 
other hand, with the decrease of pt , the heat leakage loss will decrease for the decrease in the time 
spent on the contact between the high-temperature working fluid and the environment outside the 
cylinder, so the entropy generation due to heat leakage loss on the power stroke will decrease which 
can be seen from the change of , pq tS∆ in tab. 3. The entropy generation due to friction loss on the 
power stroke will increase with the increase of the peak velocity, this can be seen from the change of 

, pf tS∆ . The amount of increase in the entropy generation due to friction losses is always smaller than 
the amount of the decrease in the entropy generation due to heat leakage loss on the power stroke, so 
the total entropy generation on the power stroke is decreased, which can be seen from the change of 
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ptS∆  in tab. 3. Both the entropy generations on the nonpower strokes and power stroke are decreased, 
so the entropy generations per cycle S∆  with the optimal piston motion are smaller than those with 
the conventional piston motion.  

Table 3. Numerical results for different cases with constrained acceleration 4 23 10ma m s−= × ⋅  

Case maxv  
/m s  

pt  

ms  

nptS∆  

1J K −⋅  

, pf tS∆  

1J K −⋅  

, pq tS∆  

1J K −⋅  

ptS∆  

1J K −⋅  

S∆  

1J K −⋅  

fT  

K  

conv. 13.3 8.33 0.1585 0.0634 0.6576 0.7210 0.8795 1242 
1 

opt. 39.6 3.20 0.1119 0.1962 0.2724 0.4686 0.5805 1371 

conv. 13.3 8.33 0.1585 0.0634 0.6637 0.7271 0.8856 1165 
2 

opt. 40.5 3.20 0.1119 0.1971 0.3598 0.5569 0.6688 1619 

conv. 13.3 8.33 0.1585 0.0634 0.6472 0.7106 0.8691 1182 
3 

opt. 39.9 3.20 0.1119 0.1964 0.3268 0.5232 0.6351 1501 

conv. 13.3 8.33 0.1585 0.0634 0.6329 0.6963 0.8548 1223 
4 

opt. 40.2 3.20 0.1119 0.1972 0.2287 0.4259 0.5378 1200 

conv. 6.7 16.65 0.0792 0.0317 0.9299 0.9616 1.0408 949 
5 

opt. 39.6 3.20 0.0531 0.1962 0.2724 0.4686 0.5217 1371 

conv. 13.3 8.33 0.1585 0.0643 0.9411 1.0045 1.1630 1000 
6 

opt. 40.5 3.20 0.1119 0.1976 0.4989 0.6965 0.8084 1242 

conv. 13.3 8.33 0.3170 0.1268 0.6576 0.7844 1.1014 1247 
7 

opt. 28.2 3.60 0.2269 0.3196 0.3089 0.6285 0.8554 1371 

 
4.3. Comparison between the optimal and conventional piston motions 
 

Table 4. Result comparison between optimal trajectories with constrained  
acceleration and conventional engines 

Case 

Decrease in 

nptS∆  

Decrease in 

, pf tS∆  

Decrease in 

, pq tS∆  

Decrease in 

ptS∆  

Decrease in 

S∆  

1 0.0466 -0.1328 0.3852 0.2524 0.2990 
2 0.0466 -0.1337 0.3039 0.1702 0.2168 
3 0.0466 -0.1330 0.3204 0.1874 0.2340 
4 0.0466 -0.1338 0.4042 0.2704 0.3170 
5 0.0261 -0.1645 0.6575 0.4930 0.5191 
6 0.0466 -0.1333 0.4422 0.3090 0.3556 
7 0.0901 -0.1928 0.3487 0.1559 0.2460 

 
Tab. 4 lists the comparison results between the optimal trajectory and the conventional motion 

for different cases with constrained acceleration. From the amounts of the decreases of 
nptS∆ and 

, pf tS∆ listed in tab. 4, one can see that the amount of the decrease of the entropy generation 
nptS∆  due 

to the friction loss on the nonpower strokes is smaller than that of the increase of the entropy 
generation , pf tS∆ due to the friction loss on the power stroke after optimizing the piston motion, the 
entropy generation of the cycle due to friction loss increases after the optimization. Although the 
entropy generation of the cycle due to friction loss increases, the total entropy generation of the cycle 
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decreases after the optimization. From the amount of the decrease of , pq tS∆ listed in tab. 4, one can see 
that, for the whole cycle, the amount of the decrease of the entropy generation due to the heat leakage 
loss is much larger than that of the increase of the entropy generation due to the friction loss, the total 
optimization process is realized by decreasing the entropy generation due to heat leakage loss on the 
initial portion of the power stroke. Comparing the optimization results of cases 1-4, one can see that 
the optimization effect is better when the burn time is longer. Comparing the optimization results of 
cases 1 and 5, one can see that the optimization effect is better when the cycle period is longer. 
Furthermore, figs. 2-4 show the comparison of the optimal and conventional piston motions on the 
power stroke for case 1. 

 
Figure 2. Comparison of piston velocity of optimal and conventional  

 
motions on the power stroke for case 1 

 
Figure 3. Comparison of working fluid temperature of optimal and  

conventional motions on the power stroke for case 1 
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Figure 4. Comparison of piston position of optimal and conventional motions  

on the power stroke for case 1 
 

4.4. Comparison between the optimal piston motions with different optimization objectives. 
 

Figs. 5-7 show the optimal piston trajectories on the power stroke with two different 
optimization objectives, which include the optimal trajectory with maximum work output (power 
operating regime) [15] and minimum entropy generation (economical operating regime) (this paper). 
Tab. 5 lists the corresponding results of numerical calculations. In Tab. 5, / RW Wτε =  is the 
effectiveness, i.e. the second-law efficiency [47]. When heat transfer is considered, the reversible 
process which corresponds to the practical expansion process of Diesel cycle after optimizing the 
piston motion is not a reversible adiabatic expansion process, but a reversible polytropic process, so 
the reversible work output per cycle which corresponds to the practical cycle after optimization should 
be 

/
0 0 0( ) / ( 1) [1 ( / ) ]vCR C

R p P f C vC C fW N R T T n N C T X X= − − + −                     (31) 

where n  is the polytropic exponent. The first part of eq. (31) 0( ) / ( 1)p P fN R T T n− −  is used to 
calculate the reversible expansion work of reversible polytropic process. When optimizing the piston 
motion, the heat leakage along the nonpower strokes is negligible, so the reversible process which 
corresponds to the practical compression process after optimization is still a reversible adiabatic 
compression process. The second part of eq. (31) /

0 0[1 ( / ) ]vCR C
C vC C fN C T X X−  is used to calculate the 

reversible compression work of reversible adiabatic compression process. According to Ref. [48], the 
polytropic exponent changes during the expansion process of Diesel engine, and usually the mean 
polytropic exponent of the expansion is 1.22 ~ 1.28n = . In this paper, 1.25n =  is used.  

pW  is the work output on the power stroke, , npf tW is the work lost due to the friction loss on the 
nonpower strokes, and comW  is the required compression work input along the nonpower strokes, so 
the net work output per cycle is , npp f t comW W W Wτ = − − . 
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Figure 5. Comparison of piston velocity on the power stroke for two optimization objectives 
 

 

Figure 6. Comparison of working fluid temperature on the power stroke for  
two optimization objectives 

 
Comparing the results of numerical calculations with two optimization objectives listed in tab. 

5, one can see that the entropy generation and work output with the minimum entropy generation 
objective decrease by 47%  and 45% , respectively, while the efficiency increases by 25% . 

From figs. 5-7, as is also shown by paper [49], one can see that optimization results are 
essentially different for two optimization objectives. The similarities for the optimal piston motions 
with different optimization objectives are as follows: They both consist of three segments, including 
two boundary segments and a middle movement segment; both the last segments are maximum 
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deceleration segment; both the middle movement segments and corresponding optimal solutions with 
unconstrained acceleration satisfy the same differential equations. While the differences for the 
optimal piston motions with different optimization objectives are: The first segment with the minimum 
entropy generation objective is a maximum acceleration segment, while that with maximum work 
output objective is a stock-still segment. The reason for the differences is: With the maximum work 
output objective, the piston motion has a delay time on the power stroke, during the delay time the 
piston is stock-still and the temperature of the working fluid increases rapidly with the fuel 
combustion ( which can be seen from the variation of the temperature in fig. 6), so the increase of the 
temperature of the working fluid at the beginning of the power stroke increases the piston expansion 
work output ( which can be seen from the variation of pW  in tab. 5). In addition, from the results 
listed in tab. 5, one can see that the optimal times pt  spent on the power stroke with different 
optimization objectives are different, i.e. the optimal distributions of the total cycle time τ  among 
the strokes are distinct. Both the two above kinds of differences show that optimization objective has 
important effects on the optimal piston trajectory. 

 

Figure 7. Comparison of piston position on the power stroke for two optimization objectives 
 

Table 5. Numerical results for the optimal piston trajectories of 
power stroke with two optimization objectives 

, ( )fW Jτ  
Optimal objective maxv  

/m s  
pt  

ms  
ptS∆  

1J K −⋅  
RW  

J  
pW  

J  
Wτ  
J  , npf tW  , pf tW  

Q  
J  

fT  

K  
ε  

Minimum  
entropy generation 39.56 3.2 0.4686 388.6 507.3 277.4 33.6 58.9 81.7 1371 0.714 

Maximum  
work output 14.97 9.66 0.8838 837.1 740.2 501.1 42.8 24.5 241.1 1061 0.598 

 
5. Conclusion 

 
On the basis of Refs. [17, 24], this paper studies a Diesel cycle engine with internal and 
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external irreversibilities of friction and heat leakage, in which the finite rate of combustion is 
considered and the heat transfer between the working fluid and the cylinder wall obeys the Newton’s 
heat transfer law. The optimal piston trajectories for minimum the entropy generation per cycle are 
derived for the fixed total cycle time and fuel consumed per cycle. Optimal control theory is applied to 
determine the optimal piston trajectories for the cases of unconstrained and constrained piston 
accelerations on each stroke and the optimal distribution of the total cycle time among the strokes. The 
main conclusions include: (1) The optimal piston motions with minimum entropy generation and 
maximum work output optimization objectives consist of three segments, including two boundary 
segments and a middle movement segment, the first segment of the optimal piston motion with the 
minimum entropy generation objective is a maximum acceleration segment, while that with maximum 
work output objective is a stoke-still segment. There are in fact several ways of achieving those 
pathways of which one points out just two: one mechanical solution is using a contoured plate to guide 
the piston on the desired path as shown in fig. 8 (i.e. an eccentric shaft of properly designed shape 
turns the optimal motion of the piston into a constant angular rotation) [see page 42 of Ref. [50] in 
detail], and another completely different way to transform the optimized paths is the use of an 
electrical coupling, see page 42 of Ref. [50] in detail. (2) After minimum entropy generation 
optimization, the amount of the decrease of the entropy generation due to the heat leakage loss is much 
larger than that of the increase of the entropy generation due to the friction loss, so the total 
optimization process is realized by decreasing the entropy generation due to heat leakage loss on the 
initial portion of the power stroke. (3) The optimization objective has influence on the optimal 
trajectory of the heat engine. The results obtained in this paper can provide some guidelines for the 
optimal design and operation of practical internal combustion engines.  

 
Figure 8. The mechanical transformer. An eccentric shaft of properly designed shape turns the 

optimal motion of the piston into a constant angular rotation 
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Nomenclature 
 
a  -acceleration, [ 2/m s ] 
b  -cylinder bore, [ m ] 
C  -constant volume heat capacity, [ 1 1kJ kg K− −⋅ ⋅ ] 
F  -explosion fraction, [ − ] 
f  -friction force, [ 2/kg m s⋅ ] 
G  -finite combustion rate, [ m ] 
H  -Hamiltonian, [ − ] 
h  -heating function, [ kJ ] 
k  -heat transfer coefficient, [ 2/W K m⋅ ] 
L  -stroke length, [ m ] 
l  -connecting rod length, [ m ] 
N  -number of moles of gas, [ − ] 
n  -polytropic exponent, [ − ] 
Q  -heat leakage, [ J ] 
R  -gas constant, [ 1 1J mol K− −⋅ ⋅ ] 
r  -crankshaft length, [ m ] 
S  -entropy generation, [ 1J K⋅ － ] 
T  -temperature, [ K ] 
t  -time, [ ms ] 
v  -velocity, [ /m s ] 
W  -work output, [ J ] 
X  -displacement, [ m ] 
Greek symbols  
ε  -the second-law efficiency, [ − ] 
θ  -angle of crankshaft rotating, [ − ] 
µ  -friction coefficient, [ /kg s ] 
τ  -cycle time, [ ms ] 
Subscripts  
f  -the state of combustion end 

 npf t，  -the effect of friction loss on nonpower strokes 
 pf t，  -the effect of friction loss on power stroke 

i  -the state of combustion start 
max  -maximum 
min  -minimum 

 pq t，  -the effect of heat transfer on power stroke 

npt  -nonpower stroke 

pt  -power stroke 
0 p  -the state of power stroke start 
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