
1 

 

UNSTEADY MIXED CONVECTION FLOW FROM A SLENDER CYLINDER 

DUE TO IMPULSIVE CHANGE IN WALL VELOCITY AND TEMPERATURE  

by 

P. M. PATIL1* and I. POP2 

1Department of Mathematics, JSS’s Banashankari Arts, Commerce and Shanti Kumar Gubbi Science 

College, Vidyagiri, Dharwad – 580 004, India; E-mail:pmpmath@gmail.com 
2Faculty of Mathematics, University of Cluj, R-3400 CLUJ, CP 253, Romania. 

 
An unsteady mixed convection flow of a viscous incompressible fluid over a non-permeable 

linear stretching vertical slender cylinder is considered to investigate the combined effects of 

buoyancy force and thermal diffusion. It is assumed that the slender cylinder is in line with the 

flow. The unsteadiness in the flow and temperature fields is caused due to the impulsive change in 

the wall velocity and wall temperature of linearly stretching vertical slender cylinder. The effect of 

surface curvature is also taken into account, particularly for the applications as wire and fiber 

drawing where exact predictions are expected. The governing boundary layer equations are 

transformed into a non-dimensional form by a group of non-similar transformations. The resulting 

system of coupled non-linear partial differential equations is solved by an implicit finite difference 

scheme in combination with the quasi-linearization technique. Numerical computations are 

performed to understand the physical situations of linear stretching surface for different values of 

parameters to display the velocity and temperature profiles graphically. The numerical results for 

the local skin-friction coefficient and local Nusselt number are also presented. Present results are 

compared with previously published work and are found to be in excellent agreement. 

Keywords: unsteady flow; mixed convection; slender cylinder; impulsive change; linearly  

stretching sheet. 

Introduction 

 The flow and heat transfer characteristics induced by a stretching surface in a Newtonian fluid is 

of great practical importance because it occurs in many manufacturing processes in the polymer industry 

such as a polymer fibre is extruded continuously from a die with a tacit assumption that the fibre is 

inextensible. The cooling of a long metallic wire in a bath (an electrolyte) is another physical situation 

belonging to this category. Glass blowing, continuous casting, and spinning of fibers also involve the 

flow due to stretching surface. During its manufacturing process a stretched sheet interacts with the 

ambient fluid thermally and mechanically. The thermal interaction is governed by the surface heat flux. 
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This surface heat flux can either be prescribed or it is the output of a process in which the surface 

temperature distribution has been prescribed. Heat transfer over a stretching porous sheet subjected to 

power law heat flux in presence of heat source is recently studied by Hitesh Kumar [1]. However, in real 

life situations one has to encounter the boundary layer flow over the non-linear stretching surface. For 

example, in a melt-spinning process, the extrudate is stretched into a filament while it is drawn from the 

die. Finally, this surface solidifies while it passes through effectively controlled cooling system in order 

to acquire the top- quality property of the final product.   

 Flow over a cylinder is generally considered as two-dimensional phenomena as the radius of the 

cylinder is large enough compared to the boundary layer thickness. In contrast, for a slender cylinder 

when the radius of the cylinder is same as the order of the boundary layer thickness, the flow is 

considered to be axisymmetric. In the axisymmetric flow, the governing equations consists of the 

transverse curvature term which is strong enough to induce the behavior of flow and temperature fields 

and correspondingly, the skin friction coefficient and heat  transfer rates over the surface. The impact of 

transverse curvature is vital in many applications such as wire and fibre drawing wherein accurate 

prediction is expected and thick boundary layer can exist on slender or near slender bodies. Suction or 

injection (blowing) of a fluid through the stretching surface, as, for instance, in mass transfer cooling, can 

significantly change the flow field and, as a consequence, affects the heat transfer rate from the surface.  

  Mixed convection flows, or coupled forced and natural convection flows arise in many transport 

processes both in natural and engineering applications. Such processes occur when the effects of 

buoyancy forces in forced convection or the effects of forced flow in natural convection become much 

more significant. The interaction between flow and thermal fields due to stretching of a boundary has 

very important role in many practical engineering applications. Unsteady mixed convection flows do not 

necessarily allow similarity solutions in many physical situations. The nonsimilarity and unsteadiness in 

such flow problems may be due to the free stream velocity or due to the curvature of the body or due to 

the surface mass transfer or even possibly due to all these phenomenal effects. Since the mathematical 

difficulties involved in obtaining nonsimilar solutions for such problems, many researchers and scientists 

have confined their work either to steady nonsimilar flows or to unsteady semi similar or self similar 

flows [2-4]. 

      Chen and Mucoglu [5] and Mucoglu and Chen [6] have examined the effects of mixed convection 

boundary layer flow over an impermeable vertical slender cylinder due to the thermal diffusion with 

prescribed wall temperature and heat flux conditions, respectively. They obtained the solution by using 

the local non-similarity method. Further, Bui and Cebeci [7], Lee et al. [8] Wang and Kleinstruver [9], 
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and more recently, Takhar et al. [10] have solved this problem using an implicit finite difference scheme. 

Heckel et al. [11] have discussed the variable temperature effects on the mixed convection flow over a 

vertical cylinder. Recently, Kumari and Nath [12] analyzed the effects of localized cooling/heating and 

suction/injection on the mixed convection boundary layer flow on a thin vertical cylinder. Ishak et al. [13] 

analyzed the effects of injection and suction on the steady mixed convection boundary layer flows over a 

vertical slender cylinder with a free stream velocity and a wall surface temperature proportional to the 

axial distance along the surface of the cylinder. Dai et al. [14] have studied the localized phenomena in a 

slender cylinder composed by an incompressible hyperelastic material subjected to axial tension. In this 

study, authors have constructed analytical solutions based on a three dimensional setting and use the 

analytical results to describe the key features observed in the experiments by others. All the above studies 

are dealt with steady flows. In many practical situations, the flow could be unsteady due to the velocity of 

the moving cylinder which varies with time or due to the free stream velocity which also varies with time. 

Roy and Anilkumar [15] have investigated the unsteady effects on mixed convection flow over a moving 

vertical slender cylinder with surface mass transfer. Consequently, Singh et al [16] have examined the 

unsteady effects on mixed convection boundary layer flow from a rotating vertical slender cylinder in an 

axial flow.  

     The aim of the present analysis is to obtain a non-similar solution of an unsteady mixed convection 

boundary layer flow with combined effects of transverse curvature and thermal diffusion over a linearly 

stretching vertical slender cylinder, where the slender cylinder wall velocity and wall temperature changes 

suddenly arbitrarily with time. The non-similar solutions of the transformed equations are obtained 

numerically by solving a set of coupled nonlinear partial differential equations using the method of quasi-

linearization in combination with the implicit finite difference scheme [17].  

Mathematical formulation 

 Consider the unsteady mixed convection boundary layer flow over a nonpermeable stretching 

vertical slender cylinder of radius R  and uniform temperature of the ambient fluid∞T . The physical 

model and coordinate system considered are shown in Fig.1, where the radial coordinate r  is measured 

from the axis of the cylinder and the axial coordinatex  is measured vertically upwards such as 0=x  

corresponds to the leading edge. The radius of the slender cylinder is the same as the order of the 

boundary layer thickness. Hence, the flow is taken to be axisymmetric. At time 0t > , the velocity 0U of 

the moving cylinder is suddenly changed to 0 1( , ) ( ) (1 ) ( )wU t x U x R ε ϕ τ= + and the wall temperature is 

suddenly changed to 2( ) ( / )(1 )wT x T T x R ε∞= + ∆ + , where 1ε and 2ε are constants, τ is the 
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dimensionless time andT∆ is the characteristic temperature. Thermo-physical properties of the fluid in 

the flow model are assumed to be constant except the density variations causing a body force term in 

momentum equation. Further, it is assumed that the velocity ),( txU w  of the stretching cylinder is 

proportional to the distance x from the leading edge and timet , while the temperature ( , )wT x t  of the 

surface of the cylinder depends onx . It is also assumed that The Boussinesq approximation is invoked 

for the fluid properties to relate density changes to temperature changes, and to couple in this way the 

temperature field to the flow field [17 - 18]. In view of these aforementioned assumptions, the equation of 

conservation of mass, momentum and energy governing the mixed convection boundary layer flow over a 

stretching vertical slender cylinder can be expressed as: 
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The initial conditions are:  

                             ),()0,,(),,()0,,(),,()0,,( rxTrxTrxvrxvrxurxu iii ===   
                          

(4) 

and the physical boundary conditions for the problem are given by: 
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where 21)( τατφ +=  with 0>α  for accelerating flow and 0<α  for decelerating flow, respectively. 
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Fig. 1. Physical model and coordinate system. 

Applying the transformations: 

                 
( )

( )

( ) ( )

1/2 1/2 2 2

2

1/2

4
, ,

4

( , , ) ( ) ( ) ( , , ), ( , , ) ( ) / ( / )
m

U xx r R
t

R U x x R R

x r t R U x x f G T T T x R

ν νξ η τ
ν

ψ ν φ τ ξ η τ τ ξ η ∞

     − = = =            

= = − ∆
         (6) 
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Substituting (6) into Eqs. (2) and (3), we obtain the following transformed non-dimensional partial 

differential equations 
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The boundary conditions (5) become  
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for 1,0 ≤≤ ξτ . Here ∫ +=
η

ητηξ
0

),,( wfdFf  where 0wf =  and λ  is the constant mixed convection 

parameter, which is defined as 
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where 3 2( / ) /xGr g T x R xβ ν= ∆ is the local Grashof number and ( )0Re /x U x R ν=  is the local 

Reynolds number. It is worth mentioning here that ( )wT x T∞>  refers to a heated cylinder (assisting flow) 

and ( )wT x T∞<  for a cooled cylinder (opposing flow), respectively. Therefore, the mixed convection 

(buoyancy) parameter 0λ >  indicates for assisting flow, 0λ <  for opposing flow and 0=λ  

corresponds to forced convection flow. We have assumed that the flow is steady at time 0=τ  and 

becomes unsteady for 0>τ  due to the time dependent slender cylinder 

velocity( )1( , ) ( ) (1 ) ( )wU x t U x ε φ τ= + and temperature 2( , ) ( / ) (1 )wT x t T T x R ε∞= + ∆ + . Hence, the 

initial conditions (i.e. conditions at 0τ = ) are given by the steady state equations obtained from Eqs. (8) 

and (9) by substituting( ) 1φ τ = , 0/// =∂∂=∂∂= τττφ GFdd when 0τ = . The corresponding 

boundary conditions are obtained from (10). The main physical quantities of interest are the skin 

friction coefficient fC
 
and the local Nusselt number xNu , which represent the wall shear stress and the 

heat transfer rate at the surface of the cylinder, respectively. These coefficients are defined as  
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where µ is the dynamic viscosity and ρ is the fluid density. Using (6) in (12), we obtain 

                           ),0,(2Re),,0,()(2Re 2/12/12/12/1 τξτξτφ ηη GNuFC xxfx
−−− −==                 (13) 

Numerical procedure 

The non-linear coupled partial differential Eqs. (8) and (9) under the boundary conditions (10) 

have been solved numerically using an implicit finite difference scheme in combination with the quasi-
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linearization technique [15, 16]. Quasi-linearization technique can be viewed as a generalization of the 

Newton-Raphson approximation technique in functional space. An iterative sequence of linear equations 

is carefully constructed to approximate the nonlinear Eqs. (8)  and (9) under the boundary conditions (10) 

achieving quadratic convergence and monotonicity. With the help of quasi-linearization technique, the 

nonlinear coupled partial differential Eqs. (8) and (9) are replaced by the following sequence of linear 

partial differential equations. 
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The coefficient function with iterative index i are known and the function with iterative index (i+1) are to 

be determined. The corresponding boundary conditions of Eqs. (14) and (15) are given by 
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where η∞ is the edge of the boundary layer. The coefficients in equations (14) and (15) are given by: 
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Since the method is presented for partial differential equations in a recent study by Singh and Roy 

[16], its detailed description is not provided here. At each iteration step, the sequence of linear partial 

differential equations (14) and (15) were expressed in difference form using central difference scheme in 

the η - direction and backward difference scheme in ξ  and τ directions. Thus in each step, the resulting 

equations were then reduced to a system of linear algebraic equations with a block tri-diagonal matrix, 

which is solved by Varga’s algorithm [19]. To ensure the convergence of the numerical solution to the 

exact solution, step sizesη∆ and τ∆  are optimized and taken as 0.005 and 0.01, respectively. The results 

presented here are independent of the step sizes at least up to the fourth decimal place. A convergence 

criterion based on the relative difference between the current and previous iteration values is employed. 

When the difference reaches 0.0001, the solution is assumed to have converged and the iteration process 

is terminated.  
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Results and Discussion 

The computations have been carried out for various values 

of 1 2Pr(0.7 Pr 7.0), ( 2.918 10.0), (-0.5 0.5), (-0.5 0.5), (0 1.0).λ λ ε ε ε ε τ τ≤ ≤ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

The edge of the boundary layer (∞η )
 
has been taken between 2.0 and 5.0 depending on the values of the 

parameters. The results have been obtained for both accelerating ( )2( ) 1 ; 0, 0 1φ τ α τ α τ= + > ≤ ≤
 
and 

decelerating ( )2( ) 1 ; 0, 0 1φ τ α τ α τ= + < ≤ ≤  velocities of the fluid. The profiles drawn at 0=x  or 

0ξ =  will represent the similarity solutions when all solutions along the −x  direction are made 

congruent using similarity transformations. In order to validate the accuracy of our method, we have 

verified our results with the steady state results of reduced skin friction and heat transfer coefficients 

( ))0,(),0,( ξξ ηηη Gf −  by direct comparison with the results previously reported by Chen and Mucoglu 

[5], Takhar et al. [10], and Roy and Anilkumar [15]. The comparisons are presented in Table 1 and are 

found to be in excellent agreement. 

The effect of buoyancy parameter ( )λ  and Prandtl number (Pr ) on velocity and temperature 

profiles ( ) ( )( ), , , , ,F Gξ η τ ξ η τ for accelerating flow ( ) 21φ τ ατ= + , 1α = with 7.0Pr =  and 

0.5ξ = are displayed in Figs. 2 - 5. In buoyancy aiding flow ( )0λ > , the buoyancy force shows the 

overshoot in the velocity profiles ( ), ,F ξ η τ  near the surface for fluids of lower Prandtl number (air, 

7.0Pr = ) while for fluids of higher Prandtl number (water, 0.7Pr = ), the overshoot of the velocity is 

not much significantly observed as shown in Figs. 2 - 3. The magnitude of the velocity overshoot 

enhances with the buoyancy parameter ( )0λ > while it reduces as Prandtl number increases (see Figs. 2 

and 3). However, the influence of buoyancy force ( )λ  is larger for lower Prandtl number fluid (air, Pr = 

0.7). The physical reason is that the lower viscosity of the fluid, which enhances the velocity profile 

within the stretching boundary layer as the assisting buoyancy force ( )λ acts like a favorable pressure 

gradient. Thus, the velocity overshoot, occurs. For higher Prandtl number fluids (water, 0.7Pr = ), the 

overshoot is not significant because fluids with higher values of the Prandtl number implies more viscous 

fluid which have less impact on the buoyancy parameter( )λ . It is very interesting to note from Fig. 2 that 

for opposing buoyancy flow, i.e. for negative values of the buoyancy parameter )0(<λ , the reverse 
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(back) flow occurs at 0.295cλ λ= ≈ − , where )0(<cλ  is the critical value of λ for which boundary 

layer separates from the cylinder.   
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1
 = 0.5, ε

2
 = 0.5 and m = 1.

______ τ = 0
............ τ = 1

λ = -2.918, 5, 10

F
(ξ

, η
, τ

)
η

 

It should be noticed that for )0(<< cλλ , the boundary layer equations (12) and (13) have no 

solutions and the full Navier-Stokes and energy equations have to be solved. The buoyancy opposing 

force reduces the magnitude of the velocity considerably within the stretching boundary layer. The effect 

of time τ  is crucial for the velocity overshoot. In particular, 

for 1 21, Pr 0.7, 0.5, 0.5α ε ε= = = = and 0.4ξ =  at 0.25η =  when 10=λ , overshoot in the velocity 

profile reduced approximately by 43% as time τ  increases from 0=τ  to 1=τ  when 1=m . The 

influence of buoyancy parameter ( )λ  has relatively less impact on the temperature profiles ( ), ,G ξ η τ  

and which are displayed here in Figs. 4 and 5. It is observed that the effect of Pr  results into the thinner 

thermal boundary layer since the higher Prandtl number fluids (water, 0.7Pr = ) have lower thermal 

conductivity. Also, it is observed from Figs. 4 and 5 that the magnitude of the temperature profiles 

( ), ,G ξ η τ decrease considerably within the thermal boundary layer when Pr = 7.0, i.e. for 

(water, 0.7Pr = ) as compared to Pr = 0.7 (air, Pr = 0.7).  

Figures 6 - 7 display the skin friction coefficient and local Nusselt number 

( )xxfx NuC 2/12/1 Re,Re −  for accelerating and decelerating flows with( ) 21φ τ α τ= + , 1α =  and 1α = − . 

We observe that the skin friction coefficient fx C2/1Re  decreases with the increase of buoyancy parameter 

( )λ (see Fig. 6). 
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However, skin friction coefficient increases with the increase of Prandtl number from 0.7 to 7.0. 

The physical reason is that the assisting buoyancy force ( )0λ > implies favorable pressure gradient, and 

the fluid gets accelerated, which results in thinner momentum and thermal boundary layers. For 

accelerating flows; for example, 1α = ,  1 20.5, 0.5ε ε= = and 1.0ξ =  at 0.5τ = , skin friction coefficient 

fx C2/1Re decreases approximately about 62% and 6% as mixed convection parameterλ  increases from 

2.0 to 4.0 for Pr 0.7= and 0.7 , respectively. In case of decelerating flows; for example, 

1α = − , 1 20.5, 0.5ε ε= = and 1.0ξ = at 0.5,τ = skin friction coefficient fx C2/1Re decreases 

approximately about 20% and 83% , as λ increases from 2.0 to 4.0, respectively, for Pr 0.7=  and 0.7 , 

respectively. The behavior of skin friction coefficient fx C2/1Re increasing monotonously with increasing 

time τ  for accelerating flows while decreasing monotonously with increasing time τ  in case of 

decelerating flows. Figure 7 describes the effects of mixed convection parameter λ and Prandtl number 

Pr on the local Nusselt number xx Nu2/1Re− . The local Nusselt number xx Nu2/1Re− increases with 

increasing Pr  as well as mixed convection parameterλ . In particular, for accelerating flows 

with 1α = , 1 20.5, 0.5ε ε= = and 1.0ξ =  at 0.5τ = , due to the increase of mixed convection parameter 

increases from 2λ =  to 4λ = , the percentage increase of the local Nusselt number xx Nu2/1Re− is 

approximately about 6% and just1% for Pr= 0.7 and 7.0 , respectively. 
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Similarly, for decelerating flows with 1α = − , 1 20.5, 0.5ε ε= = and 1.0ξ = at 0.5,τ =  the 

percentage increase of the local Nusselt number xx Nu2/1Re− is approximately about 123% and 120% at 

Prandtl number Pr= 0.7 and Pr = 7.0 respectively, when mixed convection parameter increases 

from 2λ =  to 4λ = . Further, it is noted that for accelerating flow (1α = ), local Nusselt number increases 

monotonously with increasing time τ  while local Nusselt number xx Nu2/1Re−  decreases monotonously 

with increasing timeτ for decelerating flow. The above characteristics in variation of local Nusselt 

number can also be followed from the temperature profiles presented in Figs. 3 and 4. 

Figures 8 and 9 illustrate the role of wall velocity parameter 1ε due to impulsive change and time 

τ  on the velocity and temperature profiles( ) ( )( ), , , , ,F Gξ η τ ξ η τ
 

for accelerating 

flow ( ) 21φ τ α τ= + , 1α = , when 22, 0.5, 0.5λ ξ ε= = = and 7.0Pr = . The velocity and temperature 

profiles
 
are influenced by the wall velocity parameter1ε . In fact, velocity profile is decreasing with the 

wall velocity parameter1ε  when it is suddenly reduced ( )1 0ε < i.e. 1 0ε = to - 0.5 while it is increasing as 

the wall velocity parameter1ε  is suddenly increased( )1 0ε > i.e. 1 0ε = to 0.5. However, the temperature 

profile is increasing with the wall velocity parameter 1ε  when it is suddenly reduced ( )1 0ε <  while 

decreasing as wall velocity parameter1ε  is suddenly increased( )1 0ε > . This clearly indicates that in an 

unsteady flow, an increase in the wall velocity parameter 1ε acts as an accelerating force and hence fluid 

flow gets faster while decrease in the wall velocity parameter1ε acts as decelerating force and hence fluid 

flow gets slower. 
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Figure 8: Effects of ε
1
 on velocity profile for φ(τ) =1+ ατ2,

α = 1, ξ = 0.5, ε
2
 = 0.5, λ = 2, Pr = 0.7 and m = 1.
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Figure 9: Effects of ε
1
 on temperature profile for φ(τ) =1+ ατ2,

α = 1, ξ = 0.5, ε
2
 = 0.5, λ = 2, Pr = 0.7 and m = 1.
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The magnitude of the velocity and temperature profiles near the surface reduces with timeτ . For 

example, 1α = , 22, 0.5, 0.5λ ξ ε= = = , and 7.0Pr = at 0.5η = , magnitude in the velocity and 

temperature profiles reduced approximately by 48% , 10% and 49% , 21% as τ  increases from 0.0 to 1.0 

at 1 0.5ε = −  and 1 0.5ε = . 

 Figures 10 and 11 represent the influence of the wall velocity parameter 1ε on the skin friction 

coefficient and heat transfer rate ( )xxfx NuC 2/12/1 Re,Re −  when 1,ξ =  21, 0.5λ ε= = and 7.0Pr = . 

Results indicate that the skin friction coefficient fx C2/1Re and heat transfer rate xx Nu2/1Re− increase with 

the increase of the wall velocity parameter1ε . The wall velocity parameter 1ε  decreases from 0.5 to - 0.5, 

the skin friction coefficient fx C2/1Re  as well as the local Nusselt number xx Nu2/1Re− decreases, as 

shown in Figs.10 and 11. In particular, for accelerating flows; for 

example, 1α = , 7.0Pr = , 21, 0.5λ ε= = and 1ξ = at 5.0=τ  the skin friction coefficient and heat 

transfer rate are to decrease approximately about 114% & 31%. Furthermore, for decelerating flows; for 

example, 1α = − , 7.0Pr = , 21, 0.5λ ε= =  and 1ξ = at 5.0=τ , the skin friction coefficient and heat 

transfer rate decreases approximately about 220% and 29% as the wall velocity parameter 1ε  decreases 

from 0.5 to -0.5 at 1=m . Figures 12 and 13 depict the importance of the wall temperature 2ε  due to 

impulsive change and time τ  on the velocity and temperature profiles( ) ( )( ), , , , ,F Gξ η τ ξ η τ
 
for 
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accelerating flow ( ) 21φ τ α τ= + , 1α = , when 12, 0.5, 0.5λ ξ ε= = = and 7.0Pr = . The velocity and 

temperature profiles
 
are influenced by the wall temperature parameter2ε . 
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Figure 10: Effects of ε
1
on skin friction coefficient for 

φ(τ) = 1+ α τ2, ξ =1, λ = 1, Pr = 0.7 and ε
2
= 0.5.
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Figure 11: Effects of ε
1
on heat transfer rate for φ(τ) = 1+ α τ2,

ξ =1, λ = 1, Pr = 0.7 and ε
2
= 0.5.
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In fact, velocity and temperature profiles are decreasing with the wall temperature parameter2ε  is 

suddenly reduced ( )2 0ε < i.e. 2 0ε = to - 0.5 while they are increasing as the wall temperature 

parameter 2ε  is suddenly increased( )2 0ε > i.e. 2 0ε = to 0.5. This clearly indicates that in an unsteady 

flow, an increase in the wall temperature parameter2ε acts as an accelerating force and hence fluid flow 

and temperature gets enhanced while decrease in the wall temperature parameter2ε acts as decelerating 

force and hence fluid flow and temperature gets reduced. The magnitude of the velocity and temperature 

profiles near the surface reduces with timeτ . For example, 1α = , 12, 0.5, 0.5λ ξ ε= = = , 

and 7.0Pr = at 0.5η = , magnitude in the velocity and temperature profiles reduced approximately by 

45% , 24% and 49% , 21% as τ  increases from 0.0 to 1.0 at 2 0.5ε = −  and 2 0.5ε = .  
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Figure 12: Effects of ε
2
 on velocity profile for φ(τ) =1+ ατ2,α = 1,

ξ = 0.5, ε
1
 = 0.5, λ = 2, Pr = 0.7 and m = 1.
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Figure 13: Effects of ε
2
 on temperature profile for φ(τ) =1+ ατ2,

α = 1, ξ = 0.5, ε
1
 = 0.5, λ = 2, Pr = 0.7 and m = 1.
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Conclusions 

A numerical investigation is performed to study an unsteady mixed convection flow over 

stretching vertical slender cylinder is considered to investigate the combined effects of buoyancy force 

and thermal diffusion, where the slender cylinder is in line with the flow. The unsteadiness in the flow 

and temperature fields is caused by the impulsive change in the wall velocity as well as in the wall 

temperature. Numerical results reveal that the buoyancy force( )λ and the Prandtl number (Pr ) reduce 

the skin friction coefficient fx C2/1Re  and local Nusselt number xx Nu2/1Re− . The velocity profile exhibits 

significant enhancement for low Prandtl number fluid as compared to the magnitude of the velocity for 

higher Prandtl number. The velocity profile is enhanced due to sudden change in the wall velocity 

1ε while it is reduced when the wall velocity 1ε is suddenly reduced. The velocity and temperature 

profiles are enhanced by wall temperature 2ε  suddenly changed while reduced due to sudden fall in the 

wall temperature.   
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Nomenclature 

fC      skin friction coefficient 

pC       specific heat at constant pressure 



15 

 

f        dimensionless stream function 

F        dimensionless velocity component 

g         acceleration due to gravity (m s
-2) 

G        dimensionless temperature 

xGr     ( )( )( )3 2
T Wg T x T xβ ν∞−  local Grashof number 

xNu     local Nusselt number 

Pr       ( )mν α Prandtl number 

r         radial coordinate (m) 

R        radius of cylinder (m) 

Rex     ( )U x ν∞  local Reynolds number 

t         dimensional time 

T        temperature 

wU      stretching velocity of the cylinder (m s
-1) 

u         axial velocity component (m s
-1 ) 

v         radial velocity component (m s
-1

) 

x         axial coordinate 

 

Greek symbols 

α         unsteady parameter 

    mα       thermal diffusivity (m2 
s

-1) 

   β         volumetric coefficients of the thermal expansion (K
-1

) 

    τ         dimensionless time 

    ( )φ τ   unsteady function of τ  

    1 2,ε ε   constants 

    ξ         transverse curvature 
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    η        non-dimensional co-ordinate 

    λ        ( )2Rex xGr buoyancy parameter (mixed convection) due to temperature gradient 

    µ        dynamic viscosity (kg.m
-1

s
-1

, Pa.s) 

    ν        ( )µ
ρ kinematic viscosity ( m2

 s
-1

) 

    ρ        density (kg.m-3) 

    ψ        stream function 

     Subscripts 

    i           initial condition 

    0          value at the wall for 0τ =  

   ∞,w     conditions at the wall and infinity, respectively 

   trx ,,   denote the partial derivatives with respect to these variables, respectively 

  , ,ξ η τ   denote the partial derivatives with respect to these variables, respectively 
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Table 1. Comparison of the steady state results ( ))0,(),0,( ξξ ηηη Gf −  with those of Chen and 

Mucoglu [5], Takhar et al. [10] and Roy and Anilkumar [15].  

Present results Chen and Mucoglu [5] Takhar et al. [10] Roy and Anilkumar 
[15] 

 ξ  λ  

( ),0fηη ξ
 

( ,0Gη ξ−
 

( ),0fηη ξ  ( ),0Gη ξ−  ( ),0fηη ξ
 

( ),0Gη ξ−
 

( ),0fηη ξ
 

( ),0Gη ξ−
 

0 0 1.3283 0.5853 1.3282 0.5854 1.3281 0.5854 1.3282 0.5854 

0 1 4.9666 0.8219 4.9666 0.8221 4.9663 0.8219 4.9664 0.8220 

0 2 7.7124 0.9304 7.7126 0.9305 7.7119 0.9302 7.7122 0.9304 

1 0 1.9171 0.8666 1.9172 0.8669 1.9167 0.8666 1.9169 0.8666 

1 1 5.2584 1.0619 5.2584 1.0621 5.2578 1.0617 5.2580 1.0621 

1 2 7.8874 1.1686 7.8871 1.1690 7.8863 1.1685 7.8871 1.1688 

 


