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An unsteady mixed convection flow of a viscous incompressible fluid over a non-permeable
linear stretching vertical slender cylinder is considered to investigate the combined effects of
buoyancy force and thermal diffusion. It is assumed that the dender cylinder is in line with the
flow. The unsteadiness in the flow and temperature fields is caused due to the impulsive change in
the wall velocity and wall temperature of linearly stretching vertical slender cylinder. The effect of
surface curvature is also taken into account, particularly for the applications as wire and fiber
drawing where exact predictions are expected. The governing boundary layer eguations are
transformed into a non-dimensional form by a group of non-similar transformations. The resulting
system of coupled non-linear partial differential equationsis solved by an implicit finite difference
scheme in combination with the quasi-linearization technique. Numerical computations are
performed to understand the physical situations of linear stretching surface for different values of
parameters to display the velocity and temperature profiles graphically. The numerical results for
the local skin-friction coefficient and local Nusselt number are also presented. Present results are

compared with previously published work and are found to be in excellent agreement.
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I ntroduction

The flow and heat transfer characteristics indumngd stretching surface in a Newtonian fluid is
of great practical importance because it occuraamy manufacturing processes in the polymer ingustr
such as a polymer fibre is extruded continuoustynfra die with a tacit assumption that the fibre is
inextensible. The cooling of a long metallic wirea bath (an electrolyte) is another physical sitna
belonging to this category. Glass blowing, contimi@asting, and spinning of fibers also involve the
flow due to stretching surface. During its manufisicty process a stretched sheet interacts with the
ambient fluid thermally and mechanically. The thakimteraction is governed by the surface heat. flux



This surface heat flux can either be prescribedt @ the output of a process in which the surface
temperature distribution has been prescribed. Haasfer over a stretching porous sheet subjected t
power law heat flux in presence of heat sourcedemtly studied by Hitesh Kumar [1]. However, ialre
life situations one has to encounter the boundayerl flow over the non-linear stretching surfacer F
example, in a melt-spinning process, the extrugastretched into a filament while it is drawn frahe
die. Finally, this surface solidifies while it passthrough effectively controlled cooling systenonder

to acquire the top- quality property of the finabguct.

Flow over a cylinder is generally considered as-tiimensional phenomena as the radius of the
cylinder is large enough compared to the boundayerl thickness. In contrast, for a slender cylinder
when the radius of the cylinder is same as theroodethe boundary layer thickness, the flow is
considered to be axisymmetric. In the axisymmetioev, the governing equations consists of the
transverse curvature term which is strong enoughdace the behavior of flow and temperature fields
and correspondingly, the skin friction coefficiemtd heat transfer rates over the surface. Thedngda
transverse curvature is vital in many applicatieagh as wire and fibre drawing wherein accurate
prediction is expected and thick boundary layer egist on slender or near slender bodies. Suction o
injection (blowing) of a fluid through the stretoli surface, as, for instance, in mass transfeirapatan
significantly change the flow field and, as a cansmce, affects the heat transfer rate from tHaeeur

Mixed convection flows, or coupled forced andunak convection flows arise in many transport
processes both in natural and engineering appitsiti Such processes occur when the effects of
buoyancy forces in forced convection or the effedftforced flow in natural convection become much
more significant. Thénteraction between flow and thermal fields duestietching of a boundary has
very important role in many practical engineeripplecations. Unsteady mixed convection flows do not
necessarily allow similarity solutions in many piogd situations. The nonsimilarity and unsteadinass
such flow problems may be due to the free stredwortitg or due to the curvature of the body or doe t
the surface mass transfer or even possibly dudl tbesse phenomenal effects. Since the mathematical
difficulties involved in obtaining nonsimilar solats for such problems, many researchers and stent
have confined their work either to steady nonsimilaws or to unsteady semi similar or self similar
flows [2-4].

Chen and Mucoglu [5] and Mucoglu and Cherhf@}e examined the effects of mixed convection
boundary layer flow over an impermeable verticander cylinder due to the thermal diffusion with
prescribed wall temperature and heat flux condijarespectively. They obtained the solution by gisin

the local non-similarity method. Further, Bui andb@ci [7], Lee et al. [8] Wang and Kleinstruver,[9]



and more recently, Takhar et al. [10] have solVesl problem using an implicit finite difference sche.
Heckel et al. [11] have discussed the variable tratpre effects on the mixed convection flow over a
vertical cylinder. Recently, Kumari and Nath [12jadyzed the effects of localized cooling/heating an
suction/injection on the mixed convection boundager flow on a thin vertical cylinder. Ishak et HI3]
analyzed the effects of injection and suction andteady mixed convection boundary layer flows @er
vertical slender cylinder with a free stream velpand a wall surface temperature proportionalh® t
axial distance along the surface of the cylindeai & al. [14] have studied the localized phenoniera
slender cylinder composed by an incompressible teygstic material subjected to axial tension. lis th
study, authors have constructed analytical solstibased on a three dimensional setting and use the
analytical results to describe the key featuregiesl in the experiments by others. All the abdudiss

are dealt with steady flows. In many practicalaitons, the flow could be unsteady due to the vslat

the moving cylinder which varies with time or duethe free stream velocity which also varies wiitiet

Roy and Anilkumar [15] have investigated the undyeaffects on mixed convection flow over a moving
vertical slender cylinder with surface mass trangBonsequently, Singh et al [16] have examined the
unsteady effects on mixed convection boundary I8ger from a rotating vertical slender cylinder &m

axial flow.

The aim of the present analysis is to obtainoa-similar solution of an unsteady mixed conwatti
boundary layer flow with combined effects of traese curvature and thermal diffusion over a linearl
stretching vertical slender cylinder, where theng@lr cylinder wall velocity and wall temperaturebes
suddenly arbitrarily with time. The non-similar stbns of the transformed equations are obtained
numerically by solving a set of coupled nonlineartial differential equations using the method oésj-
linearization in combination with the implicit fitei difference scheme [17].

M athematical for mulation

Consider the unsteady mixed convection boundaygrlfiow over a nonpermeable stretching
vertical slender cylinder of radiuR and uniform temperature of the ambient fllijd The physical
model and coordinate system considered are showigifh, where the radial coordinateis measured

from the axis of the cylinder and the axial cooadé@x is measured vertically upwards suchas O

corresponds to the leading edge. The radius ofskheder cylinder is the same as the order of the

boundary layer thickness. Hence, the flow is takebe axisymmetric. At time> 0, the velocityU , of
the moving cylinder is suddenly changeddg(t, x) =U,(x/R) (1+&,)# (7) and the wall temperature is

suddenly changed 1q(x)=T, +AT (x/R)(1+¢&,), whereg ands,are constants, Tis the



dimensionless time aill is the characteristic temperature. Thermo-phygicaperties of the fluid in

the flow model are assumed to be constant excepdémsity variations causing a body force term in

momentum equation. Further, it is assumed thatvidecity U (X,t) of the stretching cylinder is

proportional to the distancefrom the leading edge and titewhile the temperaturd, (X,t) of the

surface of the cylinder depends>onlt is also assumed that The Boussinesq approximé invoked

for the fluid properties to relate density changesemperature changes, and to couple in this Wway t
temperature field to the flow field [17 - 18]. liew of these aforementioned assumptions, the exuaefi

conservation of mass, momentum and energy govethngiixed convection boundary layer flow over a

stretching vertical slender cylinder can be expéss:

0 0
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The initial conditions are:
u,r,0)=u (x,r), vix,r0)=v,(x,r), TXxr,0)=T(xr)

and the physical boundary conditions for the pnobéee given by:

u(x,Rit)=U,(x,t)=ut,R,x)=U, . x)=U X)(1+& @), vk Rt)= 0

TR =T,(X)=T, +AT (x/R)" (1+¢,) at r=R
U(X,oo,t) — 0, T(X,oo ,t)—> Too as I - o
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3)
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where ¢(7) =1+ a 7% with a > 0 for accelerating flow andr < 0 for decelerating flow, respectively.
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Fig. 1. Physical model and coordinate system.

Applying the transformations:

i) o5 )

Yxr)=REU (X)) @) f(En.7), G &)= T-T,)/QT(x/R)")

(6)

whereU (X) =U, (x/ R) and¢ is the stream function, which is definedwas (1/r)0¢/dr and

=-(1/r)dy 19 x. We introduce also the notatiofy (£,77,7) = F (§,17,T) where the indexy

denotes the partial differentiation with respeep ta’hus, we have

u=2"U (A7) F(En,7)
1/2 _ 7
v:—B(VU(X)j A )Kmﬂjf +(m 1j(,7 [ —{f{)} 7
r X 2

Substituting (6) into Egs. (2) and (3), we obtdia following transformed non-dimensional partial

differential equations

[(1+5/7)F,J”+2(0(r)[fF,]—F2]+8qo() C)AG- ( ] (@) {dW)Fw(r) } 0 (8)



[+én)G, ] +2Prpe ) fG,-GF |- P{%zj%_fz ©)

The boundary conditions (5) become

F(¢,0r)=2(1+s), GE.0r)F ¥e, atn= 0

(10)
F(¢,0,7) - O, G¢,or)- 0 asn-ow

n
for0<r7,é<1.Heref(&,n,7)= .[ Fdn + f, where f,=0 and A is the constant mixed convection
0

parameter, which is defined as

A= E;; (11)

where Gr, = g BAT (x/ R) X /vZis the local Grashof number aridle, :UO(X/R) Iv is the local
Reynolds number. It is worth mentioning here t]ig(x) >T  refers to a heated cylinder (assisting flow)

andT, (x) <T_ for a cooled cylinder (opposing flow), respectivelherefore, the mixed convection

(buoyancy) parametet > 0 indicates for assisting flow} <0 for opposing flow andd =0
corresponds to forced convection flow. We have msslthat the flow is steady at tinie= O and

becomes unsteady far> 0 due to the time dependent slender cylinder

velocity(U,,(x,t) =U () (1+ & )@(7)) and temperatufB, (x,t) =T, + AT (x/ R) (1+&,). Hence, the
initial conditions (i.e. conditions at=0) are given by the steady state equations obtdinedEqgs. (8)
and (9) by substituting(7)=1, d¢/dr =0 F /37 =0G/d7 = Owhenr =0. The corresponding

boundary conditions are obtained from (10). Thennpdiysical quantities of interest are the skin

friction coefficientC, and the local Nusselt numbdu, , which represent the wall shear stress and the

heat transfer rate at the surface of the cylingmpectively. These coefficients are defined as

c, = 2K [0} Ny =-— X [OT (12)
pu-lor) T,()-T,\adr )

where uis the dynamic viscosity ang is the fluid density. Using (6) in (12), we obtain

Re/?C, =272 ¢(1)F, (£ 0.7), Re*Nu, =-2""2G, (£,0,7) (13)

Numerical procedure
The non-linear coupled partial differential Eq9. &8d (9) under the boundary conditions (10)
have been solved numerically using an implicittérdifference scheme in combination with the quasi-
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linearization technique [15, 16]. Quasi-linearieatiechnique can be viewed as a generalizationeof t
Newton-Raphson approximation technique in functiepace. An iterative sequence of linear equations
is carefully constructed to approximate the nomiregs. (8) and (9) under the boundary condit{@63
achieving quadratic convergence and monotonicitiyh\We help of quasi-linearization technique, the
nonlinear coupled partial differential Egs. (8) d@Ylare replaced by the following sequence ofdine

partial differential equations.

F I+l+lA& FI+1+A2 FI+1+A3 F|+l+ A G|+l I (14)
G,"+B'G"™+B,G"+B;G'™"+B,F"'=B] (15)

The coefficient function with iterative indéxare known and the function with iterative indexl( are to
be determined. The corresponding boundary conditdricgs. (14) and (15) are given by
F'(£,07)=2(1+g), GE,0rF ¥e, atn=0
F*(¢n..1)=0, G €. 1)=0 as =1, (16)

where/},  is the edge of the boundary layer. The coefficiamesquations (14) and (15) are given by:

A =(1ven) e 20(r) i == 0)”| 5 07 (1) 8 a0(r)F | )

2

INE _(1+5,7)‘1% A =8(1+En) @ (1) A Al ==2(1+ &) " g(T) F;

B, =(1+&n) " [&+2Prg(r)F|:B, =-2(1+&n) " Prg(r)F ;B =—(1+&n)” Pr%z; (18)
B, =-2(1+¢&n)” Prg(7)G; B/ =B, F.

Since the method is presented for partial difféa¢eguations in a recent study by Singh and Roy
[16], its detailed description is not provided hek¢ each iteration step, the sequence of lineatigha
differential equations (14) and (15) were expressatifference form using central difference schéme
the 77- direction and backward difference schemefirand 7 directions. Thus in each step, the resulting
equations were then reduced to a system of linlgabeaic equations with a block tri-diagonal matrix
which is solved by Varga’'s algorithm [19]. To erssihe convergence of the numerical solution to the
exact solution, step sizAggand A7 are optimized and taken as 0.005 and 0.01, ragplctThe results
presented here are independent of the step sizeastitup to the fourth decimal place. A convergenc
criterion based on the relative difference betwencurrent and previous iteration values is engioy
When the difference reaches 0.0001, the soluti@s$simed to have converged and the iteration poces

is terminated.



Results and Discussion

The computations have been carried out for variousvalues
of Pr(0.7< P 7.0)4 € 2918 A< 10.0y, (-0< 0.5, (-&5<0.5)7 (0<r<1.0)
The edge of the boundary layey () has been taken between 2.0 and 5.0 depending aalies of the

parameters. The results have been obtained foralmuéieratingiqo(r) =1+ar*0>0,0<7< ]) and

decelerating((p(r) =1+ar*,a<0,0s7< :I) velocities of the fluid. The profiles drawn at=0 or

& =0 will represent the similarity solutions when alllg®mns along thex — direction are made

congruent using similarity transformations. In orde validate the accuracy of our method, we have

verified our results with the steady state resaftseduced skin friction and heat transfer coeéins

(f,m €0),-G, (E,O)) by direct comparison with the results previouslgarted by Chen and Mucoglu

[5], Takhar et al. [10], and Roy and Anilkumar [15he comparisons are presented in Table 1 and are

found to be in excellent agreement.

The effect of buoyancy parametéﬂ) and Prandtl numberRt) on velocity and temperature
profiles (F(E,n,r) ,G(E,n,r))for accelerating flowp(r)=1+a 7%, a=1with Pr=07 and
&=0.5are displayed in Figs. 2 - 5. In buoyancy aiding/vfl(/l >0), the buoyancy force shows the

overshoot in the velocity profile§ ({,n,r) near the surface for fluids of lower Prandtl num{er,

Pr=0.7) while for fluids of higher Prandtl number (watd?y = 7.0), the overshoot of the velocity is

not much significantly observed as shown in Figs: 2. The magnitude of the velocity overshoot

enhances with the buoyancy parame(tér> O) while it reduces as Prandtl number increases (gpe E

and 3). However, the influence of buoyancy fo(eb) is larger for lower Prandtl number fluid (alft =
0.7). The physical reason is that the lower vidgosf the fluid, which enhances the velocity prefil

within the stretching boundary layer as the asgisbuoyancy force(/\)acts like a favorable pressure

gradient. Thus, the velocity overshoot, occurs. lkigher Prandtl number fluids (watér = 7.0), the

overshoot is not significant because fluids withhter values of the Prandtl number implies moreotisc

fluid which have less impact on the buoyancy patan@d). It is very interesting to note from Fig. 2 that

for opposing buoyancy flow, i.e. for negative valugf the buoyancy parametf<0), the reverse



(back) flow occurs al = A, =—0.295, where A, (<0) is the critical value ofA for which boundary

layer separates from the cylinder.

A =-2.918, 5, 10
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Figure 2: Effects of A on velocity profile when Pr = 0.7 for Figure: 3 Effects of A on velocity profile when Pr = 7 for
@1 =1+at’,a=1,§=04,¢ =05¢,=05andm=1. @) =1+at’,a=1,£=04,¢ =05¢,=05and m=1.

It should be noticed that fdr< A_ (<0), the boundary layer equations (12) and (13) have n

solutions and the full Navier-Stokes and energyatiqus have to be solved. The buoyancy opposing
force reduces the magnitude of the velocity conatolg within the stretching boundary layer. Theeeff

of time T is crucial for the velocity overshoot. In partiayla
fora =1, Pr=0.7¢,= 0.5,= 0.andé =0.4 at 7=0.25 whend =10, overshoot in the velocity
profile reduced approximately by 43% as timeincreases fromr =0 to r =1 whenm=1. The

influence of buoyancy paramet(aﬂ) has relatively less impact on the temperatureilpmG(E,l],r)

and which are displayed here in Figs. 4 and 5 tthiserved that the effect &ft results into the thinner
thermal boundary layer since the higher Prandtl memfluids (water,Pr= 7.0) have lower thermal

conductivity. Also, it is observed from Figs. 4 aBdthat the magnitude of the temperature profiles

G(é',n,r)decrease considerably within the thermal boundayerl when Pr = 7.0, i.e. for

(water,Pr=7.0) as compared to Pr = 0.7 (d#r, = 0.7).

Figures 6 - 7 display the skin friction coefficienand local Nusselt number
(Re)l(’2 C, ,Re"? Nux) for accelerating and decelerating flows wifr)=1+a 7%, a =1 anda =-1.
We observe that the skin friction coefficiel'ﬂ‘ei’ 2 C; decreases with the increase of buoyancy parameter

(A) (see Fig. 6).
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Figure 4: Effects of A on temperature profile when Pr = 0.7 for Figure 5: Effects of A on temperature profile when Pr = 7 for

@) =1+ at’, a =1, =0.4, £,=0.5, ¢,= 0.5, Pr=0.7 and m = 1. ) =1+ar’,a=1,§=04,¢ =05.¢=05andm=1.
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However, skin friction coefficient increases witletincrease of Prandtl number from 0.7 to 7.0.
The physical reason is that the assisting buoyéorcg (/1 >O) implies favorable pressure gradient, and
the fluid gets accelerated, which results in thinneomentum and thermal boundary layers. For
accelerating flows; for exampler =1, & =0.5,&,=0.8and {=1.0 at 7=0.5, skin friction coefficient
Rei’ 2 C, decreases approximately about 62% and 6% as mixegkection parameter increases from
2.0 to 4.0 for Pr=0.7and 7.0, respectively. In case of decelerating flows; ferample,
a=-1,6=0.5¢,=0.Eandf=1.0atr=0.5,skin  friction  coefficient  Re’”C, decreases
approximately about 20% and 83% , Asncreases from 2.0 to 4.0, respectively, fr=0.7 and 7.0,
respectively. The behavior of skin friction coeiéilcttRe]X“2 C; increasing monotonously with increasing

time 7 for accelerating flows while decreasing monotonpusith increasing timer in case of

decelerating flows. Figure 7 describes the effettixed convection parametet and Prandtl number

Pr on the local Nusselt numbBe;”? Nu, . The local Nusselt numbeRe;"? Nu, increases with
increasing P1 as well as mixed convection parameter In particular, for accelerating flows
witha =1,& =0.5,6,= 0.€and £=1.0 at 7=0.5, due to the increase of mixed convection parameter
increases froM =2 toA=4, the percentage increase of the local Nusselt euni®e, "> Nu, is

approximately about 6% and just1% fer= 0.7 and 7.0 , respectively.

10
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Figure 6: Effects of A and Pr on skin friction coefficient for Figure 7: Effects of A and Pr on heat transfer rate for
@) =1+at,E=1,e=05ande,=0.5. @) =1+at,&=1,e=05ande,=0.5.

Similarly, for decelerating flows wittr=-1,&=0.5,£,=0.5andé=1.0atr=0.5, the

percentage increase of the local Nusselt nurh?i@%/2 Nu, is approximately about 123% and 120% at

Prandtl numberPr= 0.7 and Pr = 7.0 respectively, when mixed congacparameter increases

fromA=2 toA=4. Further, it is noted that for accelerating flomw€1), local Nusselt number increases

monotonously with increasing time while local Nusselt numbRe;”2 Nu, decreases monotonously

with increasing time for decelerating flow. The above characteristicsvariation of local Nusselt

number can also be followed from the temperatuoéilps presented in Figs. 3 and 4.

Figures 8 and 9 illustrate the role of wall velggiarametere, due to impulsive change and time
T on the velocity and temperature profij&({,n,r) ,G({,n,r)) for accelerating
flow ¢(7)=1+a 1%, a=1, whend =2, =0.5,6,= 0.fand Pr=0.7. The velocity and temperature
profiles are influenced by the wall velocity parametgrin fact, velocity profile is decreasing with the
wall velocity parametes; when it is suddenly reduce(drl < O) i.e. £ =0to - 0.5 while it is increasing as
the wall velocity parametey is suddenly increaseéea‘1 > 0) i.e. £ =0to 0.5. However, the temperature
profile is increasing with the wall velocity paratees;, when it is suddenly reduce@s‘l <0) while
decreasing as wall velocity parametgeiis suddenly increaséei1 > 0). This clearly indicates that in an

unsteady flow, an increase in the wall velocitygmaeteg, acts as an accelerating force and hence fluid

flow gets faster while decrease in the wall velpparameteg, acts as decelerating force and hence fluid

flow gets slower.

11
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Figure 9: Effects of & on temperature profile for ¢(t) =1+ at?,
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Figure 8: Effects of e, on velocity profile for ¢(t) =1+ at?,
a=1,£=05,5=05A=2Pr=07andm=1. a=1,8§=05¢=05A=2Pr=07andm=1.

The magnitude of the velocity and temperature [@®finear the surface reduces with timeFor
exampleg =1,4=2,£=0.5,6,= 0.5, andPr=0.7at 7/7=0.5, magnitude in the velocity and
temperature profiles reduced approximately by 48%% and 49% , 21% as increases from 0.0 to 1.0

atg=—0.5andg =0.5.

Figures 10 and 11 represent the influence of thk welocity parametei, on the skin friction
coefficient and heat transfer ra(Ref(’2 C, ,Re"? Nux) when =1, A=1,¢&,=0.5andPr=07.
Results indicate that the skin friction coeffici&d.” C, and heat transfer raRe,"* Nu, increase with
the increase of the wall velocity parameterThe wall velocity parametes; decreases from 0.5 to - 0.5,

the skin friction coefficientRe/>C, as well as the local Nusselt numbBe,"* Nu, decreases, as

shown in Figs.10 and 11. In particular, for acciag flows; for
exampleg =1,Pr=0.7,4=1, &,=0.5andé =1atr = 05 the skin friction coefficient and heat
transfer rate are to decrease approximately abibAf6l1& 31%. Furthermore, for decelerating flows; for

exampleq =-1,Pr=0.7,4 =1, £,=0.5 and{ =1atr = 05, the skin friction coefficient and heat
transfer rate decreases approximately about 22@%@@#0 as the wall velocity parameter decreases

from 0.5 to -0.5 atm=1. Figures 12 and 13 depict the importance of thi teaperature, due to

impulsive change and tim& on the velocity and temperature profi{&(f,ﬂ,r),G(fﬂ,T)) for

12



accelerating flow(7)=1+a7?,a=1, when 1 =2, §=0.5, = 0.tand Pr= 0.7. The velocity and

temperature profileare influenced by the wall temperature paramgter

-Re 12 C
X f

T 0.8 T T T
0.0 05 T—= 1.0 0.0 05 T—= 1.0
Figure 10: Effects of & on skin friction coefficient for Figure 11: Effects of ,on heat transfer rate for ¢(t) = 1+ a 7,

@1)=1+a1,&=1,A=1, Pr=0.7 and €= 0.5. E=1,A=1,Pr=0.7 and €= 0.5.

In fact, velocity and temperature profiles are dasing with the wall temperature parameteis
suddenly reduced(£2<0)i.e. £,=0to - 0.5 while they are increasing as the wall terajure

parameteg, is suddenly increaseée‘r2 >0)i.e. &,=0to 0.5. This clearly indicates that in an unsteady
flow, an increase in the wall temperature parangi@cts as an accelerating force and hence fluid flow

and temperature gets enhanced while decrease walhéemperature parametgracts as decelerating
force and hence fluid flow and temperature getsiced. The magnitude of the velocity and temperature

profiles near the surface reduces with time For exampleg =1,4=2,{=0.5,6= 0.5
andPr = 0.7 at 7=0.5, magnitude in the velocity and temperature prsfileduced approximately by

45% , 24% and 49% , 21% a@sincreases from 0.0to 1.0 a4 =—0.5and £,=0.5.
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Figure 12: Effects of ¢, on velocity profile for g(t) =1+ att,a =1, Figure 13: Effects of ¢, on temperature profile for ¢(t) =1+ at’,
£=O.5,81=O.5,>\=2, Pr=0.7and m=1. u=l,£=0.5,81=0.5,>\=2, Pr=0.7and m=1.
Conclusions

A numerical investigation is performed to study ansteady mixed convection flow over
stretching vertical slender cylinder is considetednvestigate the combined effects of buoyancgdor
and thermal diffusion, where the slender cylindemiline with the flow. The unsteadiness in thanfl

and temperature fields is caused by the impulshange in the wall velocity as well as in the wall

temperature. Numerical results reveal that the aonoy force(/l)and the Prandtl numbelPf) reduce

the skin friction coefficienRe!’” C, and local Nusselt numbBe, "> Nu, . The velocity profile exhibits
significant enhancement for low Prandtl numberdflas compared to the magnitude of the velocity for
higher Prandtl number. The velocity profile is emted due to sudden change in the wall velocity

& while it is reduced when the wall velocity,is suddenly reduced. The velocity and temperature

profiles are enhanced by wall temperat@resuddenly changed while reduced due to sudderinfaltie

wall temperature.

Acknowledgements. Authors are thankful to the anonymous Reviewens tfeir useful detailed
comments to improvise the paper. Dr. P M Patil catgis this paper to one of his close friegds B. L.
Hosamani, Assistant Commissioner of Commercial Taxes, Guvent of Karnataka, India who passed
away very recently in road accident.

Nomenclature

C,; skin friction coefficient

C, specific heat at constant pressure
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f dimensionless stream function

F dimensionless velocity component

g acceleration due to graviiy §2)

G dimensionless temperature

Gr, (94 (Ty(x)-T.)x*/v?) local Grashof number
Nu, local Nusselt number

Pr (v/a,)Prandtl number

r radial coordinate (m)

R radius of cylinder (m)
Re, (U,x/v) local Reynolds number
t dimensional time

T temperature

U stretching velocity of the cylinden ™)

u axial velocity componenin(s™ )
Y radial velocity componenh(s™)
X axial coordinate

Greek symbols

a unsteady parameter

a,

m

thermal diffusivity p’s™)
£ volumetric coefficients of the thermal expansi&h) (

7 dimensionless time

@(r) unsteady function of

&,€, constants

'3 transverse curvature

15



n non-dimensional co-ordinate

A (GrX/ReXZ) buoyancy parameter (mixed convection) due to teatpes gradient

U dynamic viscositykg.m™s™, Pa.s)

v (%) kinematic viscosity fn’s™
o) density Kg.m™)

W stream function

Subscripts

[ initial condition

0 value at the wall for =0

w, 0 conditions at the wall and infinity, respective

X, r,t denote the partial derivatives with respect toeheswiables, respectively

é,n,t denote the partial derivatives with respect eséhvariables, respectively
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Table 1. Comparison of the steady stateresults (

1:'7’7

Mucoglu [5], Takhar et al. [10] and Roy and Anilkumar [15].

€.0,-G, (5,0)) with those of Chen and

& | A | Presentresults Chen and Mucoglu [5] Takhar €1.6]. Roy and Anilkumar
[15]
Fon ('5' O) -G, (5' Fon (E’ 0) -G, (E' 0) L (5’ 0] -G, ('5’ O) L (5’ O) -G, ('5’ O)
0 1.3283 0.5853 1.3282 0.5854 1.3281  0.5854 2.328 0.5854
1 4.9666 0.8219] 4.9666 0.8221 49663  0.8219 4.966 0.8220
2 7.7124 0.9304| 7.7126 0.9305 7.7119  0.9302 2.712 0.9304
0 1.9171 0.8666| 1.9172 0.8669 1.9167 0.8666 9.916 0.8666
1 5.2584 1.0619 5.2584 1.0621 5.2578  1.0617 5.258 1.0621
2 7.8874 1.1686, 7.8871 1.1690 7.8863  1.1685 1.887 1.1688
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