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Radiation is a major component of heat transfer in the modeling of furnaces. 
In this study, coupled radiative and conductive heat transfer problems are 
analyzed in complex geometries with inhomogeneous and anisotropic 
scattering participating media.  A three-dimensional model is developed 
using combination of the discrete ordinates method and blocked-off-region 
procedure. The finite volume method has been adopted to solve the energy 
equation and the radiative source term in the energy equation is computed 
from intensities field. The accuracy of radiative conductive model is verified 
by comparison with benchmark solutions from the literature. As an example 
of engineering problems, radiative-conductive heat transfer in a furnace 
model with gray, inhomogeneous and anisotropic scattering media is 
numerically studied. The distributions of temperature and heat flux in the 
furnace are analyzed for different thermoradiative parameters such as 
conduction-radiation parameter, scattering albedo and anisotropic 
scattering coefficient. The numerical algorithm described is found to be fast 
and reliable for studying combined conductive and radiative heat transfer in 
three-dimensional irregular geometries 
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1. Introduction 
 

Growing of energy consumption and generation of combustion pollutants causes the necessity 
of developing of the thermal performances in the combustion systems. This purpose can be obtained 
by improving mathematical models to design combustion systems that have enhanced energy 
efficiency with reduced pollutants production. Radiation heat transfer is an essential mode of heat 
transfer in high temperatures industrial systems such as combustion chambers and furnaces. So, it is 
important to develop mathematical models with high strength to analyze thermal radiation especially 
in case of combustion systems with coupled heat transfer modes and in enclosures with complex 
geometries [1]. 
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Recently, considerable attention has been paid to the development of accurate and efficient 
methods for handling the radiation heat transfer. Among other methods, the discrete ordinates method 
(DOM) has received increasingly more attention because of its capability to join with other algorithms 
such as common control volume algorithms used in fluid dynamics. The method of discrete ordinates 
DOM is a straightforward method to solve radiative transfer problems. It offers a good compromise 
between accuracy and computational requirements. In particular, the DOM was originally formulated 
by Chandrasekar in 1950 [2], and has been deeply studied by Carlson and Lathrop in 60-70’s [3] and 
by Fiveland and Truelove in the 80’s [4, 5]. 

Among the few earlier works on radiation problems with inhomogeneous participating media, 
Henson and Malalasekera [6] studied a comparison of the Monte Carlo and the discrete transfer 
method in 3D inhomogeneous scattering media. Guo and Maruyama [7] developed the REM2 method 
to investigate radiative heat transfer in inhomogeneous, non-gray and anisotropically scattering media. 
The discrete ordinates method has been reformulated to include effects of weak inhomogeneity in 3D 
mediums by Galinsky [8]. Zorzano et al. [9] considered the atmospheric radiation transfer with 
discrete ordinates method in plane-parallel problems with strongly non-homogeneous media. 
Formulation of the FTn finite volume method using the blocked-off-region technique in 3-D complex 
inhomogeneous participating media was presented by Guedri et al. [10]. 

In order to avoid the complexity of treating non-orthogonal grids, it is suitable to formulate a 
procedure to model irregular geometries using Cartesian coordinates formulation. The blocked-off 
method which was previously applied in the computational fluid dynamics (CFD) problems [11] is a 
procedure that can model complex geometries using Cartesian regular mesh. This method can be used 
to treat both curved and inclined surfaces. It was firstly used in two-dimensional radiative transfer 
problems by Chai et al. [12, 13]. They found very promising results for different 2D problems. Coelho 
et al. [14] used this method with the FVM and the DOM to predict radiative heat transfer in enclosures 
containing obstacles of very small thickness (baffles). The block-off method is used in the work of 
Guedri et al. [10] for inhomogeneous gray participating media and Borjini et al. [15] in another work 
used the same formulation and geometry with non-gray sooting media. Comparison between three 
types of boundary treatments, the spatial multiblock, blocked-off and embedded boundary has been 
studied by Byun et al. [16] for different cases of two-dimensional complex enclosures.  

Many researchers have studied problems with combined conduction-radiation heat transfer. 
Tan [17] used the product integration method for solving combined conduction-radiation problem in 
square enclosure with isothermal walls. The discrete ordinates method found its application in the 
work of Kim and Baek [18] in the case of coupled radiative and conductive heat transfer in rectangular 
enclosures. Rousse [19] and Rousse et al. [20] used the Control-Volume Finite Element Method 
(CVFEM) for the solution of combined mode of heat transfer in two-dimensional cavities. Three 
dimentional complex enclosures with coupled radiative and conductive heat transfer was studied in the 
work of Guedri et al. [21] using the finite volume method in gray absorbing-emitting and isotropically 
scattering medium. They found satisfactory solutions with comparison to reference data. Recently, 
Amiri et al. [22] analyzed the problem of combined conduction and radiation heat transfer in 2D 
irregular geometries by using DOM and blocked-off method with both temperature and heat flux 
boundary conditions. Chaabane et al. [23] proposed a hybrid solver based on the lattice Boltzmann 
method (LBM) and the Control Volume Finite Element Method (CVFEM) for solving two 
dimensional transient conduction and radiation heat transfer problems. 
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Although, there is a fast growth of research activity in this heat transfer area, but to the best of 
authors’ knowledge, the effects of both radiation and conduction heat transfer on three-dimensional 
irregular enclosures with inhomogeneous and anisotropically scattering media and with the flame 
effects has not been investigated. 

Therefore, in the present study, a three-dimensional blocked-off-region procedure was offered 
to model combined conductive and radiative heat transfer in multi-burner furnace with complex 
geometries and inhomogeneous participating media. The energy equation is solved using the finite 
volume method and the radiative source term in the energy equation is computed from intensities field. 
The standard solution of discrete ordinates method has been adopted to solve the radiative transfer 
equation in an absorbing-emitting and anisotropic scattering medium. The radiative conductive model 
is validated by comparison with the well-documented results in literature. Furthermore, as a case of 
engineering applications this formulation is applied to analyze the effect of the main thermoradiative 
parameters on the temperature and radiative flux distributions in a three-dimensional multi-burner 
furnace with inhomogeneous participating media. 
 
2. Mathematical and numerical formulations 
 
2.1. Energy and radiative transfer equations  

 
The energy equation for coupled radiation–conduction heat transfer of an absorbing, emitting 

and scattering media under steady state condition with constant thermal conductivity and heat 
generation is: 
  

 0.2 =′′′+∇−∇ qqTk r  (1)
 
where  is heat generation per unit volume. To obtain the temperature distribution in the 
medium by solving Eq. (1), it is necessary to relate 

q ′′′ )(W/m3

rq.∇  to the temperature distribution within the 
medium. One approach is to obtain  directly by considering the local radiative interaction with a 
differential volume in the medium. The local divergence of the radiative flux is related to the local 
intensities by 

rq.∇
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To obtain the radiation intensity field and rq.∇ , it is necessary to solve of the radiative transfer 

equation (RTE). This equation for an absorbing, emitting and scattering gray medium can be written 
as in Modest [24], 
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where  is the radiation intensity in position ( Ω,rI ) r , and in the direction ,  is the 

radiation intensity of the blackbody in the position 
Ω )(rIb

r  and at the temperature of the medium, κ  and sσ  
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are the gray medium absorption and scattering coefficients, respectively, ( )sσκβ +=  is the extinction 
coefficient, and ( Ω )′ΩΦ ,  is the scattering phase function for radiation from incident direction Ω′  to 
scattered direction Ω , and the integration is in the incident direction. For linear-anisotropic scattering, 
phase function is: 
 

 ( ) ( )Ω′Ω+=Ω′ΩΦ .1, 1A  (4)
 
in which  is an asymmetry factor. Values of parameter  are , 0 or  whether 
scattering is forward, isotropic or backward, respectively.  

11 ≤A1≤− 1 1+A 1−

For diffusely reflecting surfaces, the radiative boundary condition for Eq. (3) is 
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where r  belongs to the boundary surface and Eq. (7) applies for 0>.Ωn ,  is the radiation 
intensity leaving the surface at the boundary condition, 

( Ω,rI )
ρε  is the surface emissivity,  is the surface 

reflectivity, and  is the unit vector normal to the boundary surface. n
In the method of discrete ordinates, the equation of radiation transfer is substituted by a set of 

M discrete equations for a finite number of directions mΩ , and each integral is substituted by a 
quadrature series of the form, 
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subject to the boundary conditions 
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where  are the quadrature weights. This angular approximation transforms the original equation 
into a set of coupled differential equations [24]. 

kw

  
2.2. Method of solution of radiative-conductive model 
 

To solve the coupled radiation–conduction problem, the equations (1) and (2) are converted to 
non-dimensional form,  
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with employing a reference length, , a reference absolute temperature, , and the following 
dimensionless variables, 
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where  is the Conduction-Radiation parameter (the Stark number, Rousse [19]). crN

The procedure of the numerical calculations starts by assuming that the radiative source term 
is zero and the energy equation is solved to find the temperature field. The line by line TDMA 
Algorithm is used to quickly bring the information from all boundaries to the interior. Then the RTE is 
solved using DOM. The finite volume technique is used to discretize the spatial part of the RTE and 
an iterative procedure is employed to determine the intensity radiation field. The discretization details 
and solution procedure can be found in [24]. The employed angular quadrature set is the . 
Consequently, the radiative source term is calculated and the energy equation is solved including the 
source term only once for the global iterative process to permit faster convergency.  

NS

The iterative process continues until achieving convergence of the intensities and the 
temperature field. The convergence of the solution was evaluated using a convergence criterion taken 
as the error in the intensity field in RTE solution and the error in the temperature field for each node 
p , respectively, by the following criteria: 
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2.3. The Blocked-off method 
 

Irregular enclosures usually model using body-fitted mesh which grid lines are not necessarily 
orthogonal to each other. This kind of mesh demands extra complication in computations. In this work 
a treatment for irregular geometries in Cartesian coordinates has been presented that called the block-
off region procedure.  

 

Real Domain Simulated Domain

Inactive or blocked-off region (shaded portion)

Real Domain Simulated Domain  

(a) (b) 
Figure 1. Sample irregular geometries 
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The philosophy of this procedure consists on drawing nominal domains around given physical 
domains, so the region is divided into two parts: active and inactive or blocked-off regions. With this 
method, we can use the same rectangular (cubic in 3D enclosures) algorithms to handle curved or 
inclined boundaries. Two sample 2D geometries (for better observation) are presented in fig. 1 to 
show how they are treated to simulate from a rectangular geometry. In these figures, shaded portion is 
called inactive or blocked-off region. The remaining portion is the active region which is the real 
domain of interest. Curved boundaries appear to be a stair-stepped mesh as shown in fig. 1(b). 

In order to distinguish active region from inactive one in the blocked-off method, an 
additional source term is introduced [10, 12 and 13], 
 

 ISSS rPrCblocr +=,  (12)
 
and added to the right part of Eq. (6).  

For a given real black boundary, in a cell in the inactive region, the additional source term 
becomes  (where M is a larger number). This additional source term forces the 
nodal intensity of the inactive control volumes to 

( ) ( MMISS brPrC - , , = )
bp II = . In the active region, the additional source 

term becomes ( ) ( 0 ,0 , )=rPrC SS .  
For the case of real gray boundaries, we distinguish between emitted and reflected intensities. 

In the inactive cells the additional source terms is equal at ( )MMIb − ,ε  for the emitted part [10]. Thus, 
the nodal intensity of the inactive control volumes becomes bp II ε= . The reflected part is added 
directly into the active region calculation of the control volumes adjacent to the real boundaries (active 
cell in direct contact with an inactive cell). The additional source terms for the reflected part becomes, 
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where is a coefficient that is obtained from the discretized formulation of RTE. This coefficient is 
determined such that the intensity at the real boundaries satisfies Eq. (7). 

C

For the energy equation, the blocked-off-region technique consists on introducing a source 
term in the discretized energy equation, 
 

 pcPcCblocc TSSS +=,  (13)
 
where for all active control volume, the additional source term becomes ( ) ( )0 ,0 , =cPcC SS . But in the 
inactive region, those coefficients are given by ( ) ( )MMTSS bcPcC - , , =  [21]. 
 
3. Validation 
 

To show the validity and the accuracy of the current method, different test problems are 
analyzed and comparisons are made with the available results in literature.  
 
3.1. Test Problem 1 (The blocked-off method validation) 
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Figure 2. The geometry of test problem 1 

 
For the first test case an L-shaped enclosure is considered containing an emitting-absorbing 

medium at a temperature of  (see fig. 2), where the walls are black at . The employed 
grid includes uniform control volumes, with 

K1000 K500
51212 ×× 588 ××  control volumes in the block-off 

region. This test case is investigated in the works of Sakami et al. [25] (a new three-dimensional 
algorithm based on the discrete-ordinates method and using an  quadrature with the exponential 
spatial discretization scheme applied to a grid include 2000 tetrahedra) and Joseph et al. [26] (standard 
discrete ordinates method applied to a non-orthogonal structured grid with the  angular quadrature 
and the step differencing scheme).  

4S

4S
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Figure 3. Net heat flux along line AA ′  of the L-shaped enclosure (Fig. 2), comparison with the 
results of Sakami et al. and Joseph et al. ( )0.1,0 == εω  

 
Effect of the absorption coefficient of the medium on the wall heat flux exited from the AA ′  

line (marked on fig. 2) is displayed in fig. 3. These results were obtained by using of  quadrature 
with the step scheme. Comparison between the present results with those obtained in Sakami et al. 
[25] and Joseph et al. [26] shows an appropriate consistency. It can be found from this figure that the 
effect of the left-hand branch of the L-shaped becomes less important as the absorption coefficient 
increases. 

4S

 
3.2. Test Problem 2 (Conduction-Radiation validation) 
 

In this section, coupled conduction-radiation problem is analyzed in a three-dimensional 
rectangular enclosure with participating media. The dimensions of this tested geometry are 
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3m1101 ××=×× zyx LLL . The bottom wall ( )0=z  is hot at dimensionless temperature 1=θ  and 
other walls are cold at dimensionless temperature 5.0=θ . The media in cavity is gray and the 
boundaries are black surfaces. The medium is further assumed to absorb and emit radiation with 

, but not scatter radiant energy, 1m1 −=κ 0=ω . This test problem has been solved in the work of 
Guedri et al. [21]. They used finite volume method to model combined conductive and radiative heat 
transfer. In the present work  control volumes and  angular quadrature is used.   112121 ×× 4S

The effect of conduction-radiation parameter  on the dimensionless temperature at the 
symmetry line 

crN
( )2/,2/ yx LyLx ==

crN

 is presented in fig. 4. A finite volume solution is also given for 
the case of pure conductive heat transfer. As  decreases, radiation plays a more significant role 
than conduction. Therefore, as  decreases, a steeper temperature gradient is formed at both end 
walls (right and left surfaces) and the medium temperature inside increases as shown in fig. 4. The 
present results show comparable accuracy with those presented by Guedri et al. [21] and the finite 
element method solutions in the work of Razzaque et al. [27]. 

crN
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Figure 4. Dimensionless temperature profiles at line 2/,2/ yx LyLx ==  for various conduction-

radiation parameters .crN ( )1,0 == τω  
 
4. Results and discussion 

 

 
Figure 5. Schematic of a 3D furnace enclosure with simulated domain 

 
In this section, as an example of an application of engineering interest, the block-off region 

procedure is applied to a three-dimensional furnace. Figure 5 shows the schematic and dimensions of 
this 3D furnace enclosure with its simulated domain. The furnace has two incline boundary planes on 
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top-right and top-left and three burners that are sited on the middle of these two incline planes and 
horizontal top plane as shown in fig. 5. Each burner exit is simulated with a cone that radius of its base 
is equal to  and height equal to .  cm5 cm30

It should be mentioned that this model is not realistic. We have adopted this model to assess 
the applicability of the present method in analyzing radiative transfer in complex configurations with 
inhomogeneous and linear-anisotropic scattering media. The calculations have been carried out for 
several cases with combined conduction-radiation situation to investigate the effects of conduction-
radiation parameter  and scattering albedo crN ω  on thermal behavior of the system. Also, anisotropic 
scattering effects has been analyzed by using the different values of the scattering phase function 
coefficient .  1A

The medium is considered as gray and all furnace walls are diffuse with emissivity of  
The temperature of walls is  which is also considered as the reference temperature. Since 
the present paper has been focused on combined radiative and conductive heat transfer modeling, the 
combustion process at the each burner is modeled as a uniform heat generation zone that takes place in 
flame cone areas shown in fig. 5. The immediate advantage of this approach is that it doesn’t need to 
render fully detailed modeling of the combustion process. 

8.0 .
K600=T

The media in furnace enclosure, especially because of combustion process, consists of 
different gases and the temperature of the domain has intensive variation that makes variable 
absorption coefficient at the different points of the domain. So, considering homogeneous enclosure 
makes significant errors in the calculations. Therefore in this study, inhomogeneous participating 
media with temperature dependent absorption coefficients for the furnace enclosure is considered. 

In order to achieve this purpose, the data of Coelho et al. [14] work is used. In their work, 
radiation analysis in a combustion chamber of a utility boiler was investigated with three fixed 
different temperatures and absorption coefficients for various areas of enclosure. Because, in our work 
combined radiation and conduction heat transfer is analyzed and the temperature of furnace enclosure 
is not fixed, so a continuous distribution of absorption coefficient versus temperature is needed. 
Therefore, as shown in fig. 6, an exponential interpolation of the data of Coelho et al. work is 
obtained.  
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Figure 6. Absorption coefficient vs. temperature obtained using exponential interpolation on the 
data of Coelho et al. work 

 
For using these temperature dependent absorption coefficients, first an initial solution with 

averaged absorption coefficient for entire computation domain is achieved. Then absorption 
coefficients of the domain are corrected based on the obtained temperature field and another solution 
is performed. This iterative process continues until achieving convergence. 
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To check whether the grid resolution used is adequate, a grid independent study is carried out 
for the furnace with  and 01.0=crN 0=ω  at four spatial grid sizes, i.e., , 213111 ×× 314515 ×× , 

 and 31416121 ×× 6191×× . The calculated thermal energy out going from the bottom wall of the 
furnace for the four grid sizes are 315.06 W, 235.488 W, 205.681 W and 199.475 W, respectively. The 
percentage of difference between the first and second grid values is 25.2%, between the second and 
third grid values is 12.6% and between the third and forth grid values is 3.0%. Using these results, a 
spatial grid size of 416121 ×× is chosen as optimum for the present problem. For the angular 
resolution,  angular quadrature is selected. Grid independence study shows that the results did not 
fully achieve grid independence. However, it has been checked that further refinement of the grids 
does not affect the qualitative conclusions of this study but greatly increases the computing time [28].  

12S

In the first test case, the medium is considered to be non-scattering. Figure 7 shows the 
dimensionless temperature along the z-direction at the line AA ′  of the furnace enclosure (marked on 
fig. 5) for various values of the conduction-radiation parameter  while other parameters are fixed. 
For better observation, only the upper half of the line 

crN
AA ′  has been shown ( )21 ≤≤ z . It is obvious 

that when  increases the conductive heat transfer mode becomes dominant until it reaches infinity 
that in this point, the energy equation will transform into purely conduction heat transfer. As shown in 
fig. 7, when  is unity, the temperature profile is not greatly affected by radiation when compared to 
the case of pure conduction. This suggests that the magnitude of the conduction-radiation parameter 
should be less than unity to require a radiation heat transfer calculation 

crN

Ncr

( )1≤crN . In an opposing 
manner, when  decreases, radiative heat transfer becomes predominant. It is seen from this figure 
that the maximum temperature is occurred in the flame area. 

crN
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Figure 7. Dimensionless temperature profiles at line AA ′  for various conduction-radiation 
parameters . crN ( )0=ω  
 

In order to better studying the effect of conduction-radiation parameter  on temperature 
profiles, isothermal contours at the plane 

crN
2/xLx =  for four various  have been shown in fig. 8. 

The effect of three burners’ flames on temperature field has clearly appeared in this figure. It can be 
seen that when cr  gradually decreases and radiative heat transfer becomes dominant mode, 
isotherms concentrate around the flames that cause sharp slope in the temperature profiles. 

crN

 N
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Isotherms at the plane  for various conduction-radiation parameters . 2/xLx = crN
( )0=ω  

The non-dimensional total heat flux and the fractional radiative heat flux along the line BB ′  
of the furnace enclosure (marked on fig. 5) for different values of  are shown in fig. 9. The total 
heat flux is the summation of radiative heat flux and conductive heat flux. Also, the fractional 
radiative heat flux is the ratio of radiative heat flux to the total heat flux. Because the furnace is 
symmetric along the plane , the results is shown for half of line 

crN

2/yLy = BB ′

cr

 . Figure 
9(a) shows that the total flux becomes clearly much higher as  increases and more uniform as  
decreases. According to fig. 9(b), the fractional radiative heat flux is seen to increase when  
decreases. Figure 9(b) truly reveals earlier described sentence that when  decreases, radiative heat 
transfer becomes predominant. 
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(b) 

Figure 9. (a) Non-dimensional total heat flux; and (b) fractional radiative heat flux at line BB ′  
for various conduction-radiation parameters . crN ( )0=ω  
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Again, for better observing, the non-dimensional total heat flux contours at the front plane 
 and bottom plane  for various conduction-radiation parameter  are shown in Figs. 

10 and 11, respectively. It is seen from Fig. 10 that when  decreases and radiative heat transfer 
becomes dominant, heat flux contours concentrate around the flames of burners and disturbance in 
heat flux distribution progressively grows.  

( xLx = ) )( 0=z crN

crN

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Non-dimensional total heat flux contours at the front plane for various conduction-
radiation parameters . crN ( )0=ω  

This disturbance is better seen in fig. 11. In this figure is also observed that when radiation 
becomes dominant (small ), radiation intensity that is reflected from other furnace walls causes 
multiple projections of flames on bottom plane. For example, it is seen from fig. 11(d) that when 

 any burners have four projections on bottom plane. 

crN

001.0=crN
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Non-dimensional total heat flux contours at the bottom plane for various conduction-
radiation parameters . crN ( )0=ω  
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Figure 12 shows the dimensionless total flux and the fractional radiative heat flux at the line 
BB ′  for various scattering albedo values with 01.0=crN  and isotropic scattering . According 

to fig. 12(a) it is seen that the dimensionless total heat flux decreases when 
( 01 =A )

ω  increases. Such event 
occurs for the fractional radiative heat flux (fig. 12(b)).  
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Figure 12. (a) Non-dimensional total heat flux; and (b) fractional radiative heat flux at line BB ′  
for various scattering albedos ω . ( )0,01.0 1 == ANcr  

 
In the following, we fixed the conduction-radiation parameter at 01.0=crN  and the scattering 

albedo at 5.0=ω . The dimensionless total heat flux and the fractional radiative heat flux along the 
line BB ′  are shown in fig. 13 for various values of the scattering phase function coefficient  to 
analysis the effect of linear-anisotropic scattering. It can be seen from this figure that the total heat 
flux and the fractional radiative heat flux are higher in forward scattering situation and lower in 
backward scattering. But it is obvious that in general they are approximately insensitive to this 
parameter. So, it can be concluded that linear-anisotropic scattering doesn’t have much effect on 
thermal behavior of system. 

1A
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Figure 13. (a) Non-dimensional total heat flux; and (b) fractional radiative heat flux at line BB ′  
for various scattering phase function coefficient . 1A ( )5.0,01.0 == ωcrN  
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5. Conclusions 
 

An original 3D combination of the discrete ordinates method and the blocked-off-region 
technique was developed for analysis of combined conduction-radiation heat transfer problems. The 
blocked-off method that is used in this work is simple and has the major advantage of using the same 
rectangular (cubic in 3D enclosures) algorithm for all types of geometries and can be utilized coupled 
with common control volume algorithms used in fluid dynamics. 

In the first part of this work, this approach was applied to three-dimensional complex 
enclosures with diffuse reflective surfaces and containing gray absorbing-emitting and scattering 
medium. Results show that both wall heat flux and temperature distributions predictions are 
satisfactory when compared to benchmarked results. This consistency confirms that this method is a 
good general way for studying combined conductive-radiative heat transfer in three-dimensional 
irregular geometries. It is evident that for curved or inclined boundaries, a fine or a non-uniform grid 
is needed.  
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)

In the second part, a multi-burner furnace enclosure as an engineering case study of combined 
conductive-radiative heat transfer is analyzed with inhomogeneous and anisotropic scattering media. 
Three burners’ flames of the furnace are modeled as uniform heat generation zones. The effects of 
various influencing parameters such as conduction-radiation parameter, scattering albedo and 
anisotropic scattering coefficient on the temperature and wall heat flux distributions are investigated. It 
is evidenced from the results that the magnitude of the ratio of the radiant heat transfer to the 
conduction heat transfer should be at least unity to require a radiation heat transfer calculation 

. Also, when the radiation heat transfer becomes dominant disturbance is clearly seen in the 
heat flux contours. 
( 1≤crN

According to the results, this method is strongly recommended and it’s formulation with the 
blocked-off-region procedure develops an accurate and simple numerical tool to deal with 3D 
radiative transfer in complex geometries with inhomogeneous media.  
 
Nomenclature 
  

1A  − scattering phase function coefficient, 
[−] 

I  − radiation intensity, [ ] .srW/m2

I  − dimensionless radiation intensity, [−]
k  − thermal conductivity, [ ] W/m.K
L  − length, [ m ] 
M  − number of discrete directions, [−] 
n  − unit vector normal to the surface, [−]

crN  − conduction-radiation parameter 
( ), [−] 34/ Tk σβ=

q  − heat flux, [ ] 2W/m
Q  − dimensionless heat flux, [−] 
q ′′′  − heat source per unit volume, [ ]3W/m
Q ′′′  − dimensionless heat source per unit 

volume, [−] 
r  − position vector, [ m ] 
S  − source term, [ ] 3W/m
T  − temperature, [ K ] 
w  − quadrature weights, [−] 

zyx ,,  − coordinate, [ m ] 
ZYX ,, − dimensionless coordinate, [−] 

 
Greek symbols 

β  − extinction coefficient, [ 1m− ] 
ε  − emissivity of a surface, [−] 
θ  − dimensionless temperature, [−] 
κ  − absorption coefficient, [ 1m− ] 
ρ  − reflectivity of the surface, [−] 
σ  − Stefan-Boltzmann constant 

( ), [ ] 810670.5 −×= -4-2KWm



sσ  − scattering coefficient, [ 1m− ] 
τ  − optical thickness ( Lβ= ), [−] 
Φ  − scattering phase function, [−] 
ω  − scattering albedo, [−] 
Ω  − direction vector, [−] 

Subscripts 

* − reference quantity 

b  − black body 
m  − discrete direction 
p  − nodal point 
r  − radiation 

Superscripts 

′ − incoming direction 
n  − iteration step 
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