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This study represents the results of numerical simulation of fluid motion and free-
convective heat transfer in a square cavity with partitions mounted on the lower 
(heated) and upper (cooled) walls. The height of partitions and their heat con-
ductivity were varied Kr = 2-8000 together with Rayleigh number Ra = 10

3
-10

6
, 

which corresponded to the laminar flow. It is assumed that vertical walls of the 
cavity are adiabatic, and its horizontal walls are kept at constant, but different 
temperatures. The numerical solution based on transformation of determining 
equations by the method of finite differences was achieved. The obtained results 
show that the surface-average heat transfer coefficient decreases with a rise of 
partition height due to the suppression of convection. Also the results show that 
with an increase in heat conductivity coefficient of partitions, the Nusselt number 
increases significantly. In addition, it was found that when the value of relative 
heat conductivity coefficient changes by four orders, the Nusselt number for the 
highest partitions changes by the factor of 1.5-2 only and the integral heat trans-
fer through the whole interlayer increases with development of the heat exchang-
ing area. 

Key words: buoyancy heat transfer, staggered partitions, square enclosure  

Introduction 

Recently natural convection in an enclosure with partial vertical divider has attracted 

the considerable interest. This interest stems from the significance of buoyancy-induced flows 

in various engineering and technological applications such as convective heat loss from solar 

collectors, thermal insulation, nuclear reactors, heat-recovery systems, energy conservation in 

buildings, air conditioning and ventilation, cooling of electronic equipments, and semiconduc-

tor production. 

Many researchers have been studied the natural heat transfer and fluid flow in square 

enclosure with and without divided partitions to study the effect of partitions on the heat 

transfer mechanism inside the cavities [1-24]. Karayiannis et al. [1] have studied numerically 

convective heat transfer for air in rectangular cavities without a partition and with a vertical 

*nCorresponding author; e-mail: terekhov@itp.nsc.ru 



Terekhov, V. I., et al.: Buoyancy Heat Transfer in Staggered Dividing … 
410  THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 409-422 
 

partition with different constant temperatures on the opposite walls. The aspect ratio was 

changed from A = 0.1 to 16, and the Rayleigh number was changed from Ra = 10
5
 to 1.6·10

8
 

with the partition thickness and thermal conductivity being varied, the Nussult number was 

reduced by 12% due to the partition. Yucel et al. [2] have studied natural convection in 

partially divided square enclosures with differentially heated lateral, adiabatic, and perfectly 

conductive horizontal walls. They have concluded that the mean Nusselt number decreases 

with increasing the height and number of partitions. Dagtekin et al. [3] have investigated 

natural convection heat transfer by heated partitions within an enclosure. They have found 

that as the partitions height increases, the mean Nusselt number increases and that the position 

of partitions has more effects on fluid flow than that of heat transfer. Nakhi et al. [4] studied 

the laminar natural convection flow of a viscous fluid in an inclined enclosure with partitions; 

the range of Rayleigh number and the angle of inclination was 10
3
 to 10

6
 and 0-90°, 

respectively. It was found that the average Nusselt number increases with an increase in the 

Rayleigh number. Also, as the dimensionless partition height increases, the flow speed within 

the partitioned enclosure decreases resulting in less wall heat transfer. In addition, it was 

found that the average Nusselt number decreases as the partitioned enclosure inclination angle 

increased beyond 30°. Nansteel et al. [5, 6] performed experiments on natural convection heat 

transfer in undivided and partially divided rectangular enclosures. In their studies, the vertical 

walls were maintained at different temperatures while the horizontal walls were adiabatic. The 

experiments were carried out with water for Rayleigh numbers over the range Ra = 10
10

-10
11

. 

The vertical partial partition was fitted on the top surface. The correlations for the average 

Nusselt number were generated for the cases of conducting and non-conducting partial 

divisions as a function of Rayleigh number and aperture ratio (the height of partition to the 

height of enclosure). It was shown that the partial divisions significantly decreased the total 

heat transfer, especially when the partitions were non-conducting. Lakhal et. al. [7] studied 

numerically natural convection in inclined rectangular enclosure with perfectly conducting 

fins attached to the heated wall. The parameters governing this problem are Rayleigh number 

Ra = 10
2
-2·10

5
, aspect ratio A = 2.5-, and inclination angle j = 0-60°. The results indicate 

that heat transfer through the cover is considerably effected by the presences of the fin. Also, 

at low Rayleigh numbers the heat transfer regime is conduction predominantly. The results 

show that the walls decrease significantly heat transfer through the layer by suppression of 

vortex motion inside the cavity. At the same time the thermal conductivity of ribs may 

strengthen heat transfer by increasing the surface area which is in contact with gas [8-16]. The 

authors of these works showed that heat transfer can be effectively controlled in wide ranges 

by changing the heights of the ribs, their number, and thermal conductivity. Mushatet [17] 

conducted a detailed numerical study of turbulent convection in a square cavity with two 

partitions of different heights, located on the lower wall. The complex scenarios of 

development of the flow, depending on location of partitions, their heights, and values of 

Rayleigh numbers were shown in this work. Analysis of published data showed some trends 

for development of free convection when having partitions in the layers. Depending on the 

thermal boundary conditions, locations of the ribs or blocks, their geometry and the coeffi-

cient of thermal conductivity can be got as increasing and decreasing average heat transfer. 

The problem is complex and has multiple factors; therefore many of its aspects have still 

remained unsolved. The data of many experimental and numerical researches testify natural 

convection heat transfer in the enclosures with partitions and ribs. 
In the present study natural convection in a square cavity with partial checkerboard 

division on the upper and lower walls has been considered. It is supposed that the vertical 
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sidewalls are adiabatic, and the horizontal top and bottom walls are kept at constant, but 

different temperatures. Partitions with finite thickness and thermal conductivity are mounted 

on the top and bottom cavity of the walls in a checkerboard pattern. Such geometry is typical 

for cooling electronics, as well as the processes of heat treatment and drying of various 

products. For different values of Rayleigh numbers and wall height freely convective gas flow 

and temperature fields inside the cavity are expected. Particular attention is paid to the 

analysis of local heat transfer, which characterizes the presence of the areas of high and low 

heat transfer to all elements which produce heat, as well as integral heat transfer through the 

cavity. These data may serve as a basis for optimizing study limits for the influence of 

installation of blocks on intensity of heat transfer processes. 

The mathematical model 

The physical domain considered in 

this study is a 2-D square enclosure 

with partially divided staggered parti-

tions shown in fig. 1. The length of 

the side of the square is denoted by L. 

The thickness and length of partitions 

are represented by d and h, respec-

tively. Physical and mathematical 

statement of the problem, boundary 

conditions and numerical method are 

described in detail in work [24]. 

Here we consider the steady lami-

nar, 2-D, natural convective flow 

inside a partitioned enclosure. The 

temperatures Th and Tc are uniformly 

imposed on two opposing horizontal 

walls such as Th > Tc while the other 

walls are assumed to be adiabatic. 

Figure 1 shows the schematic and co-ordinate system of the problem under consideration. The 

fluid is assumed to be incompressible, Newtonian, and viscous; it has constant thermo-

physical properties except the density in the buoyancy term of the momentum equations. The 

effect due to viscous dissipation is assumed to be negligible. The governing equations for this 

problem are based on the balance laws of mass, linear momentum, and energy. Taking into 

account the assumptions mentioned above, and applying the Boussinesq approximation for 

the body force terms in the momentum equations, the governing equations can be written in 

dimensionless stream function-vorticity form as: 

 

 
2 2

2 2
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X Y X Y X
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Figure 1. Problem schematic and co-ordinate system 
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where the dimensionless stream function and vorticity are defined in the usual way as: 
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For the solid region (in the partitions), the energy equation for heat transfer by 

conduction, eq. (3), becomes: 
 

 
2 2

2 2
0

X Y

  
 

 
 (5) 

 
The equality of thermal fluxes takes place on the interface between the solid and 

gas: 
 

 f sK K
n n

  


 
 (6) 

 
where Kf and Ks are thermal conductivities of fluid and solid, respectively, and n represents 

the normal distance.  

The governing equations are converted into the non-dimensional form by defining 

the following non-dimensional variables: 
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The equations (1), (2), (3), and (5) are subjected to the following boundary 

conditions: 

 the lateral walls X = 0 and X = 1:  ¶q/¶X = 0, 

 the lower wall Y = 0: q = 1, 

 the top wall Y = 1: q = 0, 

 for all surface walls: y = 0, and 

 for all surface walls: z0 = (3/Dn
2
)(y0 – y1) + z1/2 – this formula is known as the Woods 

condition [25]. 

The local Nusselt number was defined as: 

 

 Nu
wN





 (8) 

 
The average Nusselt number was calculated along all area of heated walls according 

to the equation: 
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Numerical solution 

The governing equations (1), (2), (3), and (5) are solved by finite difference scheme 

which used central differencing for the second order derivative and upwind or one-sided 

differencing for non-linear first order convective terms. The role of upwind differencing 

procedure in stabilizing the numerical scheme has been well documented. The application of 

this scheme to free convection flow at high Rayleigh number is discussed in [25]. 

The following is the procedure in [25], the governing finite difference equations for 

z, q, and y can be written in the standard five point formula form. These finite differential 

equations subjected to appropriate boundary conditions, are solved by an iterative method 

known as successive substitution. If z
s
,s, and y

s
 denote functional values at the end of s-th 

iteration, the values of z, q, and y at (s + 1)
th

 iteration level are calculated from the following 

expressions: 
 

 for vorticity 

1 1 1 11
, , 1, 1, , 1 , 1 1, 1,(1 ) [ 0.5Ra Pr ( )]s s s s s ss s

i j i j i j i j i j i j i j i ja b c d h
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 for temperature 
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 for stream function               (10) 
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 for temperature in solid wall 

  

 1 11 1
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4
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where h is the step size and gz, gq, gy,and gqso are overall relaxation parameter which depends 

on the mesh size and fluid mechanical parameters, and a, b, c, d, abcandd are given 

in [25]. 

For the interface region, the eq. (6) is solved forward or backward according to the 

location of the partition. The final form of eq. (6) is: 
 

 
r f s

int
r1

K

K

 






 (11) 

 
The converged solution was defined to meet the following criterion for all dependent 

variables: 

 
1 4max. 10n n     (12) 

Model testing 

The first stage of data reliability check has been carried out on the basis of the 

classical problem on free convection in a square cavity with heated lateral walls. Comparison 

with the standard data of Davis [26] proves results discrepancy, which does not exceed  0.7% 

for computational grid knots of 80 × 80 in the range of Rayleigh numbers Ra = 10
3
-10

6
. 
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Application of the finer 

grid did not effect the 

local and integral cha-

racteristics of the flow 

and heat transfer. 

The cavity with 

partitions was calcu-

lated using the finer 

uniform grid of 120  

120 cells. Calculation 

results were compared 

with data of [2], where 

studied geometry of 

cavity with partitions 

was the same as in the 

current study, but the 

vertical walls were 

heated and the hori-

zontal ones were adia-

batic.  

Comparison results 

are shown in figs. 2 and 

3. According to these 

figures, distributions of 

isotherms, figs. 2(а), 

and (b) and streamlines, figs. 2(c) and (d), repeat 

each other with high accuracy, demonstrating all 

typical features of fluid motion and thermal 

structure inside the cavity. Results on integral 

heat transfer within an interlayer also coincide 

with data of [2]. This comparison is shown in 

fig. 3; according to this comparison, with a rise 

of Ra number the difference in calculation 

increases, but this value does not exceed ~7%. 

Calculation results and discussion 

Streamlines and temperature fields in cavity 

The gas flow and heat transfer in partially 

separated square cavities were studied numeri-

cally in the current work. It is assumed that the 

vertical walls of cavity are adiabatic, and the 

upper and lower walls are kept at constant, but with different temperatures. The working 

medium in cavity is air, therefore, Prandtl number is Pr = 0.72. Staggered partitions are placed 

on both horizontal surfaces (fig. 1). Dimensionless values of partition height were varied in 

the wide ranges and equaled h/L = 0.0, 0.1, 0.2, 0.3, and 0.4. Their thickness d/L was constant 

 

Figure 2. Comparison of isotherms and streamlines for present study 
(a, c) and isotherms and streamlines from ref. [2] (b, d) 

 
Figure 3. Comparison of data on average 

heat transfer in cavity with partitions and 
heated lateral walls 
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and equal to = 0.1. The position of partitions wi/L in calculations was not changed also, and 

values were taken as 0.15, 0.45, 0.75, 0.3, 0.6, and 0.9, respectively. 

The relative coefficient of partition heat conductivity was Kr = 2, 5, 10, 20, 50, 100, 

1000, and 8000. This range covered the whole set of materials from low-heat-conductive 

(adiabatic, Kr = 2) to high-heat-conductive (Kr  > 1000). Calculations were carried out at 

different values of Ra = 10
3
 to 10

6
. To study the flow structure and heat transfer, the 

streamlines and isotherm behavior in the gas phase and in solid partitions were analyzed and 

local and average Nusselt numbers were calculated. 

Figure 4 illustrates distributions of streamlines and temperature fields for Rayleigh 

numbers Ra = 10
5
 and 10

6
 (upper and lower groups of figures, respectively) and for high heat 

conductivity of  partition material  Kr = 8000.  At  low partitions the flow has the form of two-

-cell vortex, close to the symmetrical one. It is formed by raising forces from the heated 

surface in the cavity center. With a rise of partition, height symmetry is broken, and the 

multicell flow is formed in space between the lower and upper partitions. The intensive vortex 

 
 

Figure 4. Stream function (two left columns) and isotherms (two right columns) for h/L = 0.1, 0.2, 0.3, 
and 0.4, (a) Ra = 105, (b) Ra = 106; Kr = 8000 
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flow, which leads to local enhancement of heat transfer, is observed near the lower heated 

surface in non-encumbered area. More over, it is necessary to note that the presence of 

partitions suppresses convective gas motion and stagnation zones are formed in-between the 

partitions, where it becomes a reason for heat transfer deterioration. For high partitions (h/L = 

= 0.4) this effect is most obvious. 

With a rise of Rayleigh number (Ra = 10
6
, fig. 4b) all the above tendencies are kept 

with the only difference that a loss of flow symmetry is achieved at lower height of partitions. 

The multicellular structure in the center is the most obvious, and convective cells penetrate 

deeper into the space in-between the partitions. 

The effect of relative heat conductivity coefficient of partition material Kr on stream 

functions  and  isotherms is shown in fig. 5. Calculation data for two Rayleigh numbers Ra = 

= 10
5
 and 10

6
 are shown there at constant height of partitions h/L = 0.2. It is obvious that with 

an increase in heat conductivity the circulation cells are formed more intensely in-between the 

partitions. There are no separated bubbles in the case of adiabatic partitions (Kr = 2.). The 

 
Figure 5. Stream function (two left columns) and isotherms (two right columns) for varying relative 
heat conductivity Kr: 2, 100, 1000, and 8000 , at (а) Rа =105, (b) Rа =106 , and h/L = 0.2 
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weak effect of partitions on heat transfer in this case is proved by isotherm behavior. The 

influence mechanism of partition heat conductivity on the flow and heat transfer is determined 

by specific character of zone formation between the partitions. At low heat conductivity there 

is the high temperature gradient along the surface of the inter-partition cell. For heat 

conducting partitions this gradient becomes significantly lower, what additionally increases a 

contribution of raising forces in heat transfer intensification. With a rise of Rayleigh number 

(fig. 5b) these effects become stronger. With increasing Kr value, the temperature gradient in 

the partitions diminishes due to high conductivity of partitions.  

Local heat transfer 

Distribution of local Nusselt number along the outline of the lower heated wall, 

including the partitions, is shown in fig. 6. Calculation results for different partition height 

and Relay number are also presented there. For low partitions, fig. 6(а), maximal heat transfer 

is achieved on the cavity boundaries, where strong descending flows of cold gas occur. In the 

central part heat transfer is decreased, and in the center, where a thermal vortex is formed, the 

Nusslet number is close to zero. With a rise of partition height, figs. 6(b) and (d), when 

partitions start participating in heat transfer, distribution of coefficient becomes absolutely 

different. On the crest of the partitions at corner points the Nusselt numbers are maximal. In-

between the partitions heat transfer decreases drastically, and for highest h/L = 0.4, fig. 6(d), it 

is zero. At this, heat transfer intensity on the limiting boundaries of cavity decreases also.  

 

 
Figure 6. Distribution of local Nusselt number for (a) h/L = 0.0, (b) h/L = 0.1,  

(c) h/L= 0.2, and (d) h/L = 0.4; and Rа=104, 105, and 106; and Kr = 8000 
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The effect of partition heat conductivity on 

a change in local Nusslet number is shown in 

fig. 7. As it was expected, for partitions with 

high heat conductivity, local heat transfer 

increases. Variation of local Nusselt number 

shows similar trends for all Kr values. 

The effect of partitions on average  

heat transfer coefficient 

The average heat transfer coefficient was 

calculated by formula (9) along the outline of 

the heat-exchanging wall and, hence, it related 

to the whole length of separation line between 

the gas medium and solid surface. This 

processing did not consider the development 

of heat-exchanging surface at the expense of 

partitions and the effect of this factor on total heat transfer. Results of this processing are 

shown in fig. 8. Heat transfer decreases with a rise of partition height both for low and high 

heat conductivity of partitions. This indicates that partition mounting suppresses convective 

 

Figure 7. The effect of heat conductivity  
of partitions on Nusselt number for Rа = 105  
and h/L = 0.2 

 

 
Figure 8. Change in average Nusselt number with a rise of partition height for  
(a) Kr = 2, (b) Kr = 100, (c) Kr = 1000, (d) Kr = 8000; and Ra = 104, 105, and 106 
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heat transfer due to breakdown of large convective cells. This agrees absolutely with the 

conclusions of [2, 3, 8, 9], where reduction of heat transfer intensity at partition mounting was 

determined. There is a big difference in average Nusselt number without partition for the 

considered Rayleigh numbers, when the partition height is increased the difference in average 

Nusselt number for the considered Rayleigh numbers decreases. With the increase of partition 

height the average Nusselt number seems to reach an asymptotic value. It is necessary to note 

that with a rise of coefficient Kr the effects of suppression become weaker, what is shown in 

fig. 9. These effects are relatively low. This is proved by data in fig. 10, where a change in 

average Nusselt number is shown depending on relative heat conductivity coefficient Kr. 

Thus, at a change in Kr by four orders, Nusselt number for the highest interlayer changes by 

the factor of 1.5-2 only. 

When analyzing heat transfer in cavities with conducting partitions, it is necessary to 

take into account that integral heat transfer from the lower to the upper wall depends also on 

the degree of surface development. With a rise of partition height, the area of heat-exchanging 

surface increases also. To determine total heat transfer data on average Nusselt number in 

figs. 9 and 10 should be multiplied by the ratio of developed surface area to the area of similar 

surface without partitions. It is apparent that in this case dependence of integral heat transfer 

on the partition height changes absolutely, and with its rise heat transfer increases. This is also 

proved by calculation results shown in [8, 9]. 

 

 
Figure 9. Change in average Nusselt number 
depending on partition height 

 

Figure 10. The effect of heat conductivity 
coefficient on average Nusselt number 

 

The important question in the engineering approach is the definition of integrated 

heat transfer through all an enclosure. Results of calculations as relation Nu/ 0Nu  are shown 

in fig. 11 for two Rayleigh numbers Ra = 10
4
, fig. 11(a), and Ra = 10

5
,
 
fig. 11(b). Here Num is 

the integrated Nusselt number at the presence of partitions, and Num0 is the Nusselt number at 

their absence. This kind of calculation results show directly the influence of partition heights 

and their heat conductivities on an augmentation or suppression of heat transfer. 

As compared with fig. 9, where intensity of heat transfer was reduced in the process 

of an increase in height of ribs, integrated heat transfer in conformity with data in fig.11 

grows. Heat transfer increases in all the cases because of an increase in the area of ribs. 
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Exception is made only by low conductivity ribs and intensive convection inside a cavity, fig. 

11(b), Kr = 2. Under these conditions of ribbing this results in suppression of heat transfer and 

Nu/Nu0 < 1. It is obvious that this effect will be amplified with a growth of Rayleigh number. 

Heat conductivity of rib material can change the intensity of heat transfer more than in 2 

times. The data in fig. 11 allow us to make an estimation of intensity of total heat transfer 

through a enclosure at variation of geometrical parameters, rib material, and Rayleigh 

number. 

 

 
Figure 11. Control of heat transfer through an enclosure due to change of heat conductivity of ribs and 
their height, for (a) Ra = 104 and (b) Ra = 105 

Conclusions 

The numerical model for calculation of free-convective laminar flow and heat 

transfer in a square 2-D cavity with heated bottom, cooled ceiling, and alternate partitions was 

developed. The partitions height and their heat conductivity were varied in the wide limits. 

The model was tested in detail on the classical results available in publications. 

The strong effect of partitions on the flow structure and temperature distribution in 

an enclosure was determined. With a rise of partition height, the symmetrical two-cell flow 

generated by a thermal vortex in the cavity center turns gradually in the multicellular vortex 

structure. For the higher Relay numbers symmetry breakdown occurs at lower partitions. For 

high-heat-conductive partitions flow destabilization occurs at their lower heights.  

The presence of partitions affects significantly the regularities of local heat 
transfer. There are the maximums in distributions of Nusselt number caused by the 
influence of the edge effects in the corner zones of ribbing elements. In space between the 
partitions heat transfer decreases significantly, especially for extended partitions and high 
heat-conductivity coefficients because of formation of poorly blown stagnation zones. 

The surface-average heat transfer coefficient decreases with a rise of partition 
height because of suppression of convection by these partitions.  With an increase in heat-
conductivity coefficient the Nusselt number in cavity becomes significantly higher. Thus, 
at a change in the value of relative heat-conductivity coefficient almost by four orders, the 



Terekhov, V. I., et al.: Buoyancy Heat Transfer in Staggered Dividing … 
THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 409-422 421 
 

Nu number for the highest partitions changes by the factor of 1.5-2 only. Total heat 
transfer in the cavity becomes higher due to an increase in the heat exchange area. 
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Nomenclature 

A –  factor of a cavity expansion, (= H/L), [–] 
a –  thermal diffusivity of fluid, [ m2s–1] 
d –  thickness of the partition, [m] 
g –  gravitational acceleration, [ms–2] 
h –  partition height, [m] 
H –  cavity height, [m] 
k –  thermal conductivity, [Wm–1K–1] 
Kr –  thermal conductivity ratio (= Ks/Kf), [–] 
L –  length of the cavity, [m] 
n –  normal distance, [–] 
Nu  –  local  Nusselt number, [–] 
Nu –  average Nusselt number, [–] 
Nu –  average Nusselt number between bottom  
 –  and top surface, (= Nu(1 + 6h/L)), [–] 
Nu0 –  average Nusselt number without partitions 
 –  [–] 
Pr  –  Prandtl number (= f/f), [–] 
Ra –  Rayleigh number (= g(TH – TC)L3/ff),  
 –  [–] 
T –  temperature, [K] 
U –  dimensionless velocity component  
 –  in X-direction, [–] 

 

V –  dimensionless velocity component  
 –  in Y-direction, [–] 
W1-6 –  distance from side wall to partition, [m]  
X –  dimensionless horizontal axis (= x/L), [–] 
x –  horizontal axis, [m] 
Y –  dimensionless vertical axis (= y/L), [–] 
y –  vertical axis, [m] 

Greek symbols 

 –  heat transfer coefficient, [Wm–2K–1] 
 –  thermal expansion coefficient, [K–1] 
 –  kinematic viscosity, [m2s–1] 
 –  dimensionless temperature, [–] 
   stream function, [–] 
 –  dimensionless stream function 
 –  dimensionless vorticity 

Subscripts 

c –  cold wall 
h –  hot wall 
f  –  fluid 
s –  partition (solid) 
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