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In this article we studied the effect of radiative transfer and the aspect ratio 

on the 3D natural convection. Prandtl and Rayleigh numbers are 

respectively fixed at 13.6 and 10
5
. Equations of natural convection are 

expressed according the vorticity-stream function formulation. This 

equations and radiative transfer equation are respectively descritized by 

volume control method and the FTnFVM. Obtained simulation show that the 

principal flow structure is considerably modified when the radiation-

conduction parameter was varied. However, the peripheral spiraling motion 

is qualitatively insensitive to these parameters. 

 

Keywords: natural convection, radiation, 3D vertical cavities, spiral flow. 

  

1. Introduction 

 

Natural convection problem in tall vertical cavity was the object of many experimental and 

numerical studies. The majority of studies in 3D geometries are realized for cubical cavities 1-18. 

Tric et al. 10 find precise solutions of this problem using the Chebyshev pseudo-spectral algorithm. 

Pepper and Hollands 11 analyzed numerically the case of 3D natural convection of a filled air cavity. 

To simulate this case, recently Wakashima and Saitoh 12 used the high-order time–space method. 

Several other authors were interested in the analysis of the three-dimensional structures in the case of 

the air (1 and 5), of the molten metals (14-18) and of the great Prandtl numbers fluids (3 and 

4). Studies, of Hiller et al. 3 and of Mallinson and Davis 1, show that the three-dimensional 

structure of the flow comprises one or two inner spiraling motions sustaining the transverse flow 

between the front or back walls and the center of the box and a large spiraling flow near the lateral 

walls. This transverse flow was also identified in the metals molten (Viskanta et al.  14). The 

majority of the studies 19-23 relating to the combined radiation-natural convection in rectangular 

semi-transparent mediums are in the 2D case. Recently Colomer et al. 24 analyzed this problem in 

the 3D case while being interested particularly in the effect the optical thickness on the heat transfer 

and give a comparison between the two-dimensional results and those obtained in the median plane of 

a lengthened rectangular enclosure.   

However these authors were not interested in the study of the effect of the radiation on the 

transverse spiraling flow, which we propose to undertake in this work.   

In this work we propose to carry out a study of the effect of the radiation on 3D natural 

convection of the LiNbO3 in vertically lengthened enclosures for, Ra = 10
5
 and for various optical 

properties. LiNbO3 single crystal is an excellent material for various optical applications; natural 

convection and radiation have a direct effect on its crystalline growth.  
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After the formulation of the problem and some validations, the first results relate to the principal 

flow and the heat transfer and the second relate to the spiraling transverse flow. 

 

2. Formulation  

 

Figure 1, presents the considered physical system which is composed of a square basic 

parallelepipedic enclosure, with aspect ratio Ar=H/W and with different uniform temperatures 

imposed on two opposite vertical walls, whereas all the other walls are adiabatic.  One assumes that all 

these surfaces are gray and diffuse. This cavity is filled with a gray, emitting–absorbing and 

isotropically scattering fluid. The flow is supposed to be laminar and the Boussinesq approximations 

are used.  

 

Figure 1. Model Presentation 

 

The equations describing the combined radiation-natural convection are the equations of 

continuity, of momentum and of energy:   
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As numerical method we had recourse to the vorticity-vector potential formalism )( 


  which 

allows, in a 3-D configuration, the elimination of the pressure, which is a delicate term to treat. To 

eliminate this term one applies the rotational to the equation of momentum. The vector potential and 

the vorticity are, respectively, defined by the two following relations: 

'' V


   and '' 


V                                                      (4) 

In the equations (1, 2 and 3), time 't , velocity 'V


, the stream function '


, the vorticity '


, are 

put respectively in their adimensional forms by 2W , W ,   and 2W  :  and the adimensional 

temperature is defined by:  )''/()''( chc TTTTT  . 

After application of the )( 


  formalism and adimensionalisation the system of equations 

controlling the phenomenon becomes:   
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With Pr =  / , Ra = 




.

).(.. ''3
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The boundary conditions are given as: 
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The radiative transfer equation, for a gray semi-transparent medium which isotropically 

absorbs, emits and diffuses the radiation, can be written:   
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The classical of finished volumes method divides the field studied into a finished number of 

controls volumes and the intensity direction in a finished number of solid angles.  The control solid 

angle lΩΔ  is given by:   
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l indicates a discrete direction and  and  are respectively polar and azimuth angles. Integration of 

equation (8) in a control volume Δv  centered in P  (fig. 2)  and in a control angle lΩΔ  gives:   
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AΔ  are the surfaces of the control volume faces, one can write in algebraic form:   
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with : 
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Fig. 2. Volume control 

Dimensionless radiant intensity at the diffuse borders is given by: 
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In the classical FVM, polar and azimuthal angles are uniformly subdivided in respectively Nθ 

and N directions with a total of Nθ×N control angles (Fig. 3a), in the FTnFVM [26], the polar angle 

is divided uniformly into a pair number N, whereas the azimuthal angle is divided uniformly into the 

following sequence of 4, 8, 12..., 2 N, 2N .., 12, 8, 4 in each level of the polar angle as shown in the 

fig. 3b. The total number of control solid angles is thus N(N +2). This new angular discretization of 

the finished volumes method was proposed by Kim and Huh [26] for three-dimensional radiative 

transfer of a semi-transparent medium which anisotropically absorbs, emits and diffuses the radiation.   

Results obtained with the FTn FVM show a good agreement with reference solutions and are 

more precise than those obtained with the standard DOM or FVM for the same total number of 

controls angles. Indeed, FTn FVM produces a control solid angles distribution more uniform than the 

FVM. 

 

Fig. 3. Angular Discretisation. a) FVM, b) FTnFVM 

A times step equal to 10
-4

, a space grid of 51
3
 for Ar=1, 51x101x51 for Ar=2, 41x161x41 for 

Ar=4, and 31x241x31 for Ar=8 and an angular grid FT6FVM were retained to extract simulations. 

Conductive and radiative dimensionless fluxes are evaluated along the isothermal walls in the 

following way:   

 

Local conductive flux: 
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Local radiative flux: 
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The average values, on each wall, of these quantities are noted respectively cq  and rq . 
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3. Validation tests 

 

The comparison of radiative and conductive fluxes on the heated wall, with the recent results 

of Colomer et al.24, is presented, for several optical thicknesses, in table 1. A remarkable difference 

is observed between the two results but it is significant to announce that Colomer et al. 24 used the 

discrete ordinates method with suitable directions and for the classical 3D furnace case they compared 

their results only with the approximation P3 of the spherical harmonics.   

 

4. Results and discussions 

 

The effect of radiative transfer on principal flow characteristics and on the three-dimensional 

transverse flow is discussed for Ra=10
5
, Pr=13.6, 1.0t  , blacks isothermal walls and perfectly 

reflective adiabatic walls. The value of Prandtl number corresponds to LiNbO3 in the liquid state 

which is a radiativly participating medium 25. The effects of the conduction-radiation parameter, the 

optical thickness and the aspect ratio on the principal flow, the heat transfer and the transverse flow 

are discussed.  

 

 4.1 Effect of radiation on the principal flow and the heat transfer  

 

In absence of any other indication, a gray semi-transparent medium not diffusing with 1  is 

considered. For Ar=2 and in absence of the radiative transfer, a ' chat eyes ' flow tilted towards the 

cold wall is established (fig. 4a). For larger aspect ratios (Ar=4 and Ar=8) flow becomes with only one 

vortex (fig. 4b and 4c), slightly tilted for Ar=2. Figure 4 shows also that for Ar=2 and Ar=4, the flow 

is with central symmetry but for Ar=8, the flow is with central and axial symmetries. When Rc 

increases, the flow in the center intensifies and only one vortex is observed (fig. 5, 6 and 7). For Ar=2 

a grouping of two vortices is met, this grouping was already announced in two-dimensional simulation 

24. However, with a 3D model, streamlines in the XY plan are not closed. 

For Rc=1 and Rc=10, the flow is with a vortex located in the center for all the values of Rc. 

For Rc∞  the vortex, remains in the center for Rc=2, but it is localized in top of the cavity for higher 

values of Rc. Corresponding isothermal surfaces are represented on the fig. 8, 9 and 10, they highlight 

the significant reduction of the vertical stratification of the temperature in the center when the medium 

is radiatively participating. This dressing up of isotherms is due to the heating by radiation of the fluid 

near to the top of the hot wall and the bottom of the cold wall. One notes the three-dimensional 

distribution of the temperature for Rc=0.1 and 10.  When Rc ∞, the temperature field becomes 

independent of the flow and a pure radiation profile is obtained. These isothermal surfaces are quasi-

equidistant except near to the active walls. 

 

By comparing figures 11 and 12, it is clear that the radiation increases the conductive transfer 

in the top of the hot wall and weakened it in the bottom and the reverse is true for the cold wall. 

Because of the temperatures levels difference, radiative flux is more significant on the hot wall (fig. 

13) whereas conductive flux is more significant on the cold wall (fig. 12).   

For Rc=0, they exist peaks of heat transfer in the top of the cold wall and the bottom of the hot 

wall (fig. 11).  The radiation heat transfer tends to homogenize these distributions. For Rc=10 the 
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homogenization is more significant for the weak aspect-ratios (fig. 13). When Rc∞, the 

homogenization is more significant for the great aspect-ratios (fig. 14).   

 

 
 = 0  = 1  =10 

cq  
rq Rc/t cq  

rq Rc/t cq  
rq Rc/t 

Ra = 10
3
 

 

Our results 1.06 6.49 1.70 4.61 1.65 1.25 

Colomer et al. 24 1.76 6.20 1.76 4.64 1.54 1.16 

Ra = 10
4
 

 

Our results  2.04 6.89 2.45 5.12 2.23 1.65 

Colomer et al. 24 2.26 6.28 2.25 4.69 2.11 1.54 

Ra = 10
5
 

Our results  4.13 7.23 4.04 5.88 4.46 2.99 

Colomer et al. 24 4.37 6.52 3.92 5.44 4.21 2.8 

Table 1.  Comparison of thermal transfer on the hot face between our results and those of the literature 

for Pr=0.71, Rc=1/(0.01617) et t=1/17.  

  

 

Fig. 4.   Projection of the velocity vectors on the median plane (XY) for Ra=10
5
, Pr=13.6 and Rc = 0 

(without radiation), (a):  Ar=2, (b):  Ar=4, (c):  Ar=8 

 

These influences of the radiative transfer on the natural convection are similar to those 

obtained for the air with 3D24 and 2D 23 modeling. As waited, when Rc∞, the radiative fluxes 

distributions do not express any effect of gravity and are practically identical on the heated and cooled 

walls (fig. 14).  Moreover, Colomer et al. 24 observed an increase in these fluxes at both ends of z 

axis this variation is more significant for optical thin media.   

Figures 11 and 12 show also that the effects of the vertical adiabatic walls on the conductive 

transfer are more pronounced at the bottom of the hot face and the top of the cold face.  The reverse is 

true for radiative flux (fig. 13 and 14).   

 

Fig. 5.  Projection of the velocity vectors on the median plane (XY) for Ra=10
5
, Pr=13.6                          

and Rc =1, (a) : Ar=2, (b) : Ar=4, (c) : Ar=8  
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Fig. 6.  Projection of the velocity vectors on the median plane (XY) for Ra=10
5
, Pr=13.6                          

and Rc =10, (a) : Ar=2, (b) : Ar=4, (c) : Ar=8  

 

 

Fig. 7.  Projection of the velocity vectors on the median plane (XY) for Ra=10
5
, Pr=13.6                          

and Rc Rc ∞, (a) : Ar=2, (b) : Ar=4, (c) : Ar=8  

 

 
Fig. 8. Isothermal surfaces for : Ra=10

5
, Pr=13.6, 1,0 t

 and Ar=2 ; a) Rc = 0 (without radiation), b) 

Rc =1, c) Rc = 10 et d) Rc = ∞. 

 

 
Fig. 9. Isothermal surfaces for : Ra=10

5
, Pr=13.6, 1,0 t

 and Ar=4 ; a) Rc = 0 (without radiation), b) 

Rc =1, c) Rc = 10 et d) Rc = ∞. 
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Fig. 10. Isothermal surfaces for : Ra=10

5
, Pr=13.6, 1,0 t

 and Ar=8 ; a) Rc = 0 (without radiation), 

b) Rc =1, c) Rc = 10 et d) Rc = ∞. 

 

The results concerning the effects of the optical properties on the heat transfer on the active 

walls are qualitatively identical to the square cavity case 23, the optical thickness has a more 

significant influence that the scattering albedo. Table 2 summarize the effect of the optical thickness 

on the heat transfer through the active walls for Rc=10 and various values of aspect-ratio.  The results 

for  =0.01 and 100 are very close to those for respectively  =0.1 and 10. The great dependence 

between 
rq  and  is also found in this table.  For a fixed optical thickness the increase in the aspect 

ratio generates a reduction in the average conductive flux on the isothermal walls.  Radiative flux is 

maximum for Ar=4.   

 

4.2 Effect of radiation on the transverse flow  

 

In this part we present results concerning the influence of the radiative transfer on the 

transverse three-dimensional flow for Pr = 13.6 and Ra = 10
5
.   

The transverse flow is a direct demonstration of 3D nature of the movement and it is of 

primary importance to study instationnarity and transitions. This three-dimensional movement is 

generated by the presence of the adherent walls to the fluid 1 which cause a 3D effect known as 

inertia-effect and by another 3D effect says thermal-effect due to temperature variation in close to the 

side walls.   

In the air Rayleigh-Benard convection case, Kessler 18 mentioned that these heating effects 

are restricted at a small zone close to the walls whereas the effects of inertia are perceptible in all the 

enclosure. Indeed, and like already indicated, the fluid particles which move in the xy plans do not 

remain in the same plan and a weak ' hélicoïdal' flow exists.  The velocity component corresponding 

(Vz)  is in general smaller of an order of magnitude than the components of the principal flow (Vx  and 

Vy)  15. Contrary to the two-dimensional situation, projection of the velocity vectors on the median 

plane XY are not closed but describe spirals in direction of the centers of the vortices or in direction of 

the walls.   

For Ar=2 and in absence of radiation (fig. 15), a complexes transverse flow occurs.  Two 

central movements in spirals exist and converge towards an intermediate xy plan located at z  0.85 

(fig. 15a-b). This is followed by a divergent flow to the front wall as shown in these figures. We noted 

thereafter the appearance of a succession of flows in convergent, divergent spirals then again 

convergent, between this wall and plan XY (fig. 15c-d).   
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For Ar=4 (fig. 16) the flow becomes with only one vortex and the external flow becomes more 

organized with a more reduced passage of a plan towards another.   

As mentioned above, projection of the velocity vectors in the xy plans are not closed.  This is 

confirmed in the fig. 17a which shows the convergent movement towards the two vortices in xy plans. 

This structure is modified for z = 0.9 and the peripheral flow develop in spirals towards the walls (fig. 

17b). This structure persists until z=0.99 (fig. 17c) and consequently no merging of vortices is 

observed. While in the center, the flow remains convergent towards the centers of these vortices.  For 

Ar=4 (fig. 18) and Ar=8, the flow is with only one vortex for all the xy plans. 

For Ar=2 (fig. 19), the results above are clearly changed. For Rc = 1 and  = 0.1, the flow 

becomes with only one slightly tilted vortex towards the hot wall, developing in convergent- inners 

and divergent-peripherals spirals.  

The peripheral converge flow is similar to that obtained in pure natural convection. By 

increasing Rc (fig. 20) the vortex is not inclined any more and the flow becomes more and more 

organized.  For Ar=4 and 8, Rc = 1 and  = 0.1, the flow always remains with only one vortex with a 

structure almost identical to that in absence of the radiation.   

 

                  

Fig. 11.  Conductive fluxes distribution on the isothermal walls for Rc=0, Ra=10
5
, Pr=13.6    and 

1,0t    

For aspect ratio higher than 2, and when Rc tends towards the infinite, one notices that the 

center of the vortex changes position into passing from a plan towards another.  For example for Ar=4 

(fig. 21), for z=0.5 the vortex is localized in the top of the cavity, for z=0.75 it is localized perfectly at 

the center of the cavity and for z=0.85 it becomes in bottom of the cavity.  

  

               

Fig. 12.  Conductive fluxes distribution on the isothermal walls for Rc=10, Ra=10
5
, Pr=13.6    and 

1,0t    
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Fig. 13.  Radiative fluxes distribution on the isothermal walls for Rc=10, Ra=10
5
, Pr=13.6 and 

1,0t    

Figure 22, shows the variations of the transverse velocity maximum Vzmax according to the 

aspect ratio for various values of Rc. Transverse velocity increases according to Rc and Ar, which 

implies that the increase in Rc and Ar, increases the three-dimensional aspect of the flow.   

 

Fig. 14.  Radiative fluxes distribution on the isothermal walls for Rc  ∞, Ra=10
5
, Pr=13.6 and 

1,0t    

 

 

Fig. 15. Some particle tracks in absence of radiation, for Pr = 13.6, Ar=2, Rc=0 and Ra=10
5 
showing 

inner spiraling flows ((a) and (b)) and ‘peripheral’ spiraling flows ((c) and (d)). 

 

Fig. 16. Some particle tracks in absence of radiation, for Pr = 13.6, Ar=4, Rc=0 and Ra=10
5 
showing 

inner spiraling flows ((a) and (b)) and ‘peripheral’ spiraling flows ((c) and (d)). 
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Fig. 17.  Projection of the velocity vectors in absence of the radiation for Ar=2, Pr = 13.6 et Ra=10
5
.a) 

z=0,6 b)z=0,9 c) z=0.99 

 

 

Fig. 18.  Projection of the velocity vectors in absence of the radiation for Ar=4, Pr = 13.6 et Ra=10
5
.a) 

z=0,6 b)z=0,9 c) z=0.99 

 

 

Fig. 19. Some particle tracks, for Rc=1, Pr = 13.6, Ar=4, Rc=0 and Ra=10
5 
showing inner spiraling 

flows ((a) and (b)) and ‘peripheral’ spiraling flows ((c) and (d)). 

 
Fig. 20. Particle tracks for Ar=2, Ra=10

5
, Pr=13.6 et 1,0t   ; (a) Rc=10, (b) Rc∞ 
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Fig. 21.  Projection of the velocity vectors in for Rc∞,  Ar=4, Pr = 13.6 et Ra=10
5
. a) z=0,5 

b)z=0,65 c) z=0.75 d)z=0,85 e) z=0.95 

 

 

Fig. 22. Influence of Rc and Ar on maximum transverse velocity. For Ra=10
5
, Pr=13.6, = 1 and 

1,0t  . 

 

 

Table 2.   Effect of optical thickness and aspect ratio on the heat transfer for Rc=10, Ra = 10
5
, Pr = 

13.6 and 1,0t  . 

 

5. CONCLUSION 

 

The results presented in this article relate to lengthened three-dimensional enclosures 

differentially heated, these results are carried out for Pr=13.6.  

In absence of radiation there is a zone not far from the median plane where the flow is quasi-

two-dimensional. The transverse flow developing in interior spirals starts halfway between this plan 

and the front and back walls.   

Rc=10 Hot wall Cold wall 

 Ar cq  
rq Rc/t cq  

rq Rc/t 

 

0.1 

2 4.376 25.003 4.535 23.570 

4 4.091 27.130 4.241 25.839 

8 3.485 27.868 3.630 26.645 

 

1 

2 4.568 18.949 5.014 18.021 

4 4.421 19.770 4.862 18.917 

8 3.984 19.559 4.378 18.745 

 

10 

2 5.121 9.098 5.734 8.453 

4 4.545 9.469 5.175 8.839 

8 3.927 8.313 4.476 7.754 
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The effect of the radiation heat transfer on the 3D behavior of the flow is significant in the 

heart of enclosure. The flows developing in interior spirals are very sensitive in position and direction 

to the radiation, while the movement developing in peripheral spirals is qualitatively not very sensitive 

to this mode of transfer. This postulates that the radiative transfer transports the 3D heating effect to 

the major part of the cavity.   

For the weak aspect ratios, in the absence of the radiation the flow is two vortices and no 

combination of the two vortices is announced.  However, for a semi-transparent medium the flow is 

with only one vortex.   

When the radiation conduction parameter tends towards infinite the position of the vortex 

passes from the top of the cavity downwards and passing from a transversal plan towards another.   

Nomenclature 

Ar  – aspect ratio 

g


  – acceleration of gravity 

H  – height of the cavity  

i  – refractive index 

I   – dimensionless radiant intensity,  )/)'(/(' 22  cTiI  

0I   – dimensionless black body intensity,  )/)'(/(' 220  cTiI  

L   – total number of discrete solid angles 

n   – unit vector normal to the control volume surface 

P  – pressure 

Pr  – Prandtl number )/(   

cq   – dimensionless local conductive heat flux on isothermal walls 

rq    – dimensionless local radiative heat flux on isothermal walls 

Ra   – Rayleigh number 

Rc   – radiation conduction parameter )/.'.².( 3 cTWi  

s   – distance in the direction   of the intensity 

t  – dimensionless time, 

T  – dimensionless temperature 

Tc  – colde temperature 

Th  – hot temperature 

V


  – velocity vector 

W  – cavity width  

 

Greek symbols 

   – thermal diffusivity 

β   – extinction coefficient 

t   – coefficient of thermal expansion 

AΔ   – area of a control volume face 

V   – control volume 
l   – control solid angle 

   – emissivity 

t
    – temperature ratio 
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   – absorption coefficient 




  – dimensionless vector potential 

   – kinematic viscosity 

   – Stefan–Boltzmann constant 

    – optical width 




  – dimensionless vorticity vector 

0ω    – scattering albedo 




  – unit vector in the direction of the intensity 

 

Subscript 

x, y, z  – Cartesian co-ordinates   

 

Superscript 
'
   – real variables 

ll ,                     – discrete angular directions 
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