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Abstract: The flow and heat transfer in a second grade fluid over a stretching 

sheet subjected to convective boundary conditions are investegated. Similarity 

transformations have been used for the reduction of partial differential equation 

into the ordinary differential. Homotopy analysis method (HAM) has been utilized 

for the series solutions. Graphical results are displayed and analyzed. 

Computations for local Nusselt number have been carried out. 
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Introduction 
The boundary layer flows and heat transfer over a stretching sheet are quite 

useful in the engineering applications. Specific examples of such flows occur in 

the extrusion process, glass fiber and paper production, hot rolling, wire 

drawing, electronic chips, crystal growing, plastic manufactures and 

aerodynamic extrusion of plastic sheets. An extensive literature is available for 

boundary layer flows induced by a stretching sheet  ].101[    

A variety of constitutive equations have been suggested to predict the behavior of 

non-Newtonian fluids in industry and engineering. Amongst these 

non-Newtonian fluids, there is one simplest model of differential type fluids 

which is known as second grade fluid  ].1811[    This model can describe the 

normal stress effects even in steady flows. Convection flow has further practical 

engineering applications such as cooling of polymer films and metallic plates on 

conveyers. Recently Yao et al.  ]19[   discussed the flow and heat transfer in a 



viscous fluid flow over a stretching/shrinking sheet with convective boundary 

conditions. The purpose of this work is to extend the analysis of reference  ]19[   

in two directions. Firstly to develop problem formulation for a second grade fluid 

and secondly to find the series solutions. This paper is arranged as follows. In the 

next section we present the problem formulation. Section three includes the 

solutions for the velocity and temperature fields. Homotopy analysis method 

(HAM) has been used for the derivation of solutions. This method is very powerful 

and several interesting problems have been solved by this method  ].3520[    In 

section four , we discuss the convergence of the obtained solutions. The graphical 

results for the pertinent parameters are shown and analyzed in section five. In 

section six we present the concluding remarks. 

Problem formulation 
Consider the two-dimensional and steady flow of an incompressible second 
grade fluid bounded by a stretching sheet with heat transfer when the fluid 

remains stationary. The sheet is stretched with a velocity  ,)( bxxuw    where  b   

is a real number. The constant mass transfer velocity is denoted by  wv   with  

0wv   for injection and  0wv   for suction, respectively. We choose  x  axis 

along the stretching surface and the  y  axis perpendicular to  x  axis. The 

present flow consideration is governed by the following expressions 
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where  u   and  v   denote the velocity components in the  x   and  y  

directions,  1   the second grade parameter,  T   the fluid temperature,  pc   

is the specific heat,  )/(     the kinematic viscosity,     the density of the 

fluid. 

The appropriate boundary conditions are considered in the following forms 
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Here  k   is the thermal conductivity of fluid,  h   is the convective heat 

transfer coefficient,  wv   is the wall heat transfer velocity and  fT   is the 



convective fluid temperature below the moving sheet. 
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Continuity equation is automatically satisfied and Eqs.  )5()2(    reduce to  
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where  a   is a constant, prime represents the differentiation with respect to    

,  0S   for suction and  0S   for injection,  
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Dimensionless expression of local Nusselt number is 
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Homotopy solutions 
We write the initial guesses and linear operators as 
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where  iC    )51( i   denote the arbitrary constants. 

 

Zeroth order deformation problems 
The problems at this can be written as  
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where  p   is an embedding parameter,  fh   and  h   are the non-zero auxiliary parameters 

and  N f   and  N   are the nonlinear operators. For  0p   and  1p   we have 
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and  ),( pf    and  ),( p   vary from  0 ( ),f     0 ( )    to  ( )f    and  ( )    when  p   

varies from  0   to  .1   

By Taylor series expansion one has  
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The series in Eqs.  )23(   and  )24(   is strongly dependent upon  fh   and  .h   

The values of  h f   and  h  are selected by a processes that the series converge 
at  .1p   Hence 
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mth-order deformation problems 

 
At this stage problems are given by  
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The resulting series solutions are 
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in which  


mf   and  


m   indicate the special solutions. 

 

Convergence of homotopy solutions 
Obviously the series solutions  )26(   and  )27(   contain the nonzero auxiliary parameters  f   

and  .   Such parameters adjust and control the convergence of the series solutions. For range 

of admissible values of  f   and   , the   curves have been displayed for  20th  -order of 

approximations. Fig.  1  indicates that the range for admissible values of  f   and    are  

1.6 ? 0.1f      and  1.8 ? 0.2.      Further, the series also converge in the whole region of     

when  ? ? 1.0.f       



Fig. 1(a):curve for f and .
 

 

Fig. 1(b): Residual error for the function f. Fig. 1(c): Residual error for the function.

 

Table: 1. Convergence of homotopy solution for different order of approximations when  

,2.0K    ,3.0    0.1Pr   ,  ,5.0S    0 . 5    and  ? ? 1.0.f      

Order of approximation (0) (0)

1 0.246001 0.308586

10 0.233492 0.287484

15 0.233472 0.287393

25 0.233472 0.287393

30 0.233472 0.287393

35 0.233472 0.287393

f   

 

 

Graphical results and discussion 
This section highlights the influence of different parameters on velocity field  f    



and temperature profile  .   Figs.  82    show the influence of different 

parameters  ,    ,K    ,S    Pr   and    on  f    and  .   The effects of     

on velocity profile  f    are shown in Fig.  .2   This Fig. indicates that there is 

no flow and the fluid velocity is zero when  0  . The fluid velocity  f  

increases when there is an increase in    . Fig.  3   is plotted for the variations 

of second grade parameter  K   on  f   . The velocity profile  f    increases 

and the boundary layer thickness decreases when  K   is increased. Fig.  4   

shows the variation of suction parameter  S   on  .f    As expected  f  

decreases by increasing  S  . The variations of  S   on  f    are quite opposite 

when compared with  .K   Figs.  85   have been displayed for the effects of  

Pr,    ,    S   and     on the temperature profile  .   Fig.  5   depicts the 

variations of  Pr   on  .   The temperature profile     decreases when  Pr   

increases. Fig.  6   represents the effects of stretching parameter     on  .   

The temperature profile     is a decreasing function of    . The variations of  

S   on     is presented in Fig.  .7   From Fig.  7   we see that  S   has 

similar effects on temperature profile     when compared with velocity profile  

.f    Fig.  8   has been prepared for effects of    on  .   We found that when  

0   then there is no heat transfer and the temperature is zero. The 

temperature profile     clearly increases when     increases. The influence of 

the Eckert number  Ec   is shown in Fig.  .9   It is observed that     is an 

increasing function of  .Ec   This is because heat energy is stored in fluid due to 

frictional heating. Thus the effect of increasing  ,Ec   is to enhance the 

temperature at any point. The boundary layer thickness also increases when  

Ec   increases. Table  2   depicts the variation of heat transfer at the wall  

)0(    for some values of  P r ,   ,Ec       and     when  2.0K   and  

0S  .  



Fig. 2. Influence ofon f. Fig. 3. Influence of S on f.

 

 

Fig. 4. Influence of K on f. Fig. 5. Influence of Pr on.

 

 



Fig. 6. Influence ofon. Fig. 7. Influence of S on

 

 

Fig. 8. Influence ofon. Fig. 9. Influence of Ec on.

 

 

Table 2: Values of local Nusselt number  
2/1Re/ xNu   for parameters  ,    P r ,   Ec   and    

when  5.0S   and  .2.0K   



1/2Pr / Re

0.1 0.7 0.3 0.2 0.082916

0.5 0.250173

1.0 0.334452

2.0 0.402237

0.5 0.5 0.3 0.2 0.214365

0.7 0.250132

1.0 0.288561

2.0 0.356172

0.5 1.0 0.1 0.2 0.268673

0.5 0.356192

1.0 0.305945

2.0 0.301107

0.5 0.7 0.2 0.0 0.242896

0.2 0.2

xEc Nu 

42184

0.5 0.241265

 

 

 

Concluding remarks 
We studied the heat transfer analysis on the flow of a second grade fluid over a 

stretching wall with convective boundary conditions. The homotopy analysis 

method has been applied for the series solutions. The graphical results for 

emerging parameters are discussed. Numerical values of local Nusselt number 

are computed. The main results have been summarized as follows. 

 The velocity field  f    increases by increasing     and  .K   

 The effects of  K   and  S   on  f    are quite opposite. 

 The variations of  Pr   and     on     are qualitatively similar. 

 Behavior of  Ec   and  Pr   on the temperature     are opposite. 

 The heat transfer effects are absent when  0  . 

 The local Nusselt number increases as  Pr   increases and decreases when  

Ec   increases. 
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Nomenclature

constant parameter, [ ]

stretching sheet parameter, [ ]

second grade fluid parameter 

Nusselt number, [ ]

Pr Prandtl number ( / ),[ ]

rate of heat transfer, [ ]

, velocity 
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