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A numerical investigation of the two-dimensional laminar flow and heat transfer 
a rotating circular cylinder with uniform planar shear, where the free-stream ve-
locity varies linearly across the cylinder using multi-relaxation-time lattice 
Boltzmann method is conducted. The effects of variation of Reynolds number, ro-
tational speed ratio at shear rate 0.1, blockage ratio 0.1, and Prandtl number 
0.71 are studied. The Reynolds number changing from 50 to 160 for three rota-
tional speed ratios of 0, 0.5, and 1 is investigated. Results show that flow and 
heat transfer depends significantly on the rotational speed ratio as well as the 
Reynolds number. The effect of Reynolds number on the vortex-shedding frequen-
cy and period-surface Nusselt numbers is overall very strong compared with ro-
tational speed ratio. Flow and heat conditions characteristics such as lift and 
drag coefficients, Strouhal number, and Nusselt numbers are studied.  

Keyword: lattice Boltzmann method, multi-relaxation-time, rotating circular  
    cylinders, shear flow, shear rate, laminar flow 

Introduction 

Fluid flow and heat transfer around rotating cylinders is a typical process in 

industry. Furthermore periodic vortex shedding patterns and fluctuating velocity fields behind 

the bluff bodies can cause structural damage which shortens the life of the structure and 

increases the acoustic noise and the drag. This structure can be applied in the chemical 

process, textile industries, transmission cables, making metal plate, and glass and plastics 

industries. The uniform flow past a circular cylinder has been widely investigated both 

experimentally and numerically in the past due to the practical and theoretical importance of 

the flow [1-7]. However, in practice many structures, such as off-shore pipelines near the 

seabed, are immersed in a boundary layer. These are typical cases with non-uniform approach 

flows. Therefore, it is important to understand the features of the vortex shedding and 

hydrodynamic forces of a circular cylinder subject to a non-uniform flow. Some experimental 

[8-12] and numerical studies have been devoted to linear shear flow around a circular 

cylinder. However, due to the difficulty of generating shear flow, these studies were restricted 

to cases with large shear parameters but low Reynolds numbers, or at subcritical Reynolds 
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numbers but with small shears parameters. There have been fewer numerical studies than 

experimental studies, and the numerical studies were restricted to two-dimensional 

simulations, with low Reynolds number flows [13, 14]. The most relevant feature of the flow, 

at moderate values of the Reynolds number, e. g. at a Reynolds number (based on the external 

velocity and cylinder diameter) close to 50, is the instability of the symmetric wake and the 

onset of a time-periodic regime characterized by alternate vortex shedding, known as the von 

Karman vortex street, whose dimensionless period depends on the Reynolds number. 

Sohankar et al. [15] have investigated that by further increasing the Reynolds number a 

transition to three-dimensional flow occurs around the value of 180. However the periodic 

vortex shedding phenomenon remains the large-scale dominant feature even at large Reynolds 

number in the turbulent wake. In this study the free-stream with a linear velocity profile fig. 1, 

U = Uc + Gy and constant temperature T, passes over a rotating circular cylinder with a 

diameter D, angular velocity w and constant temperature Th.  
 

Therefore three non-di-

mensional parameters of flow 

are important and investi-

gated: one is Reynolds num-

ber, twice is rotational speed 

ratio b, and last non-dimen-

sional parameter is velocity 

gradient or shear rate K. As 

we said quite a few studies 

have been performed on 

uniform-shear flow over a 

circular cylinder particularly 

rotating circular cylinder. 

They have mainly investi-

gated the effects of Reynolds 

number and shear rate on the vortex-shedding frequency, the magnitude and direction of the 

mean lift, the magnitude of the mean drag, and so on in the uniform-shear flow. Despite many 

achievements to date, some controversial issues have to be further resolved for improved 

understanding of the bluff-body flow. Part of the early studies is summarized by Jordan et al. 
[16]. The numerical studies carried out by Jordan et al. indicated that the front stagnation 

point shifted to the high velocity side in the shear flow. However, they reported different 

results in regard to the direction of the transverse lift force. They found that the average lift 

was toward the low velocity side of the free-stream, while Tamura et al. [13] reported that it 

was in the opposite direction. The numerical results of Tamura et al. showed that the mean 

drag coefficient increased with the shear parameter, while the experimental results by Kwon 

et al. [11] revealed that the drag coefficient decreased monotonically as the shear parameter 

increased. One of the useful numerical methods that have been used in the recent years is the 

lattice Boltzmann method (LBM). It was used for simulating the flow field in wide ranges of 

the engineering applications such as heat transfer problems [17, 18], phase change problems 

[19-21], cylindrical structure [22, 23], turbulent flow [24, 25], porous media [26], multiphase 

flow [27], microchannel [28], etc. In the present study, the ability of LBM for simulation the 

laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where 

the free-stream velocity varies linearly across the cylinder, was investigated. The effects of 

variation of Reynolds number, rotational speed ratio (b) and shear rate (K) at blockage ratio 

 
Figure 1. Computational domain and co-ordinate system 
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0.1 and Pr = 0.71 are studied. The range of Reynolds numbers of 50 £ Re £ 160 for three 

rotational speed ratios of 0, 0.5, and 1 and K = 0.1 are investigated. The results presented in 

the form of streamlines, vorticity, and temperature contours and flow characteristics such as 

lift and drag coefficients, Strouhal number, and Nusselt numbers.  

The lattice Boltzmann method 

Lattice Boltzmann equation of momentum 

In the field of computational fluid dynamics (CFD), two major approaches to 

simulate fluids have been developed in the last decades. The classical approach is based on 

the numerical solutions of the Navier-Stokes equations (NS). Equation (1) shows the 

momentum equation, which ensures the momentum conservation, while eq. (2) shows the 

continuity equation, which secures the mass conservation. These partial differential equations 

(PDE) are solved by the discretization of space and time by using finite differences, finite 

elements, or finite volumes to derive the macroscopic values of pressure p or the fluid 

velocity u.   
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In contrast to the NS approach, the LBM divides time and space in steps to form a 

lattice and discretize the fluid as particles, which are positioned at certain points in space, 

called lattice sites or cells. These fluid particles are only allowed to move in certain and fixed 

directions, which are derived by a discretization of velocity space [29]. In the LBM, the 

particle is represented by distribution function. This distribution function is calculated by 

solving the lattice Boltzmann equation (without external force), eq. (3), which is a special 

discretization of the kinetic Boltzmann equation. The macroscopic quantities of the simulated 

fluid can then be derived by calculating the hydrodynamic moments of the distribution 

function. In contrast to the second-order PDE in the NS approach, the LBM uses only first 

order PDE: 
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where c is the particle velocity vector, f

eq
 – the equilibrium distribution function, and t – the 

relaxation time due to collision [30] and depending on the fluid viscosity. By a discretization 

in velocity space, a finite set of velocity vectors is derived, which have to conserve mass, 

momentum, and energy of the fluid particles (conservation laws). Equation (4) shows the 

discretized formulation of eq. (3). fa denotes the corresponding distribution function in 

direction a, which is associated with the discrete velocity ca 
in direction a and 

eq
f is the 

corresponding equilibrium distribution function [30]: 
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In this work the velocity space discretization in the two 

dimensional case is the D2Q9 model [30]. In this model, the 

velocity space is discretized in 9 distribution functions, which is 

the most popular model for the 2-D case. Figure 2 shows the 9 

velocities of the D2Q9 model. In the following, ea will denote 

the discrete velocity set, where a is between 0 and 8: 

 
 
 

where c = Dx/Dt, Dx and Dt are the lattice cell and the lattice time step sizes, respectively. 

For simplicity in lattice Boltzmann method assumes Dx = Dt = 1. For the D2Q9 

model, the equilibrium distribution function of eq. (4) is expressed as: 
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where wa is the equilibrium distribution weight for direction a. The fluid density r can be 

evaluated with eq. (8), whereas the velocity u is contained in the momentum fluxes of eq. (9): 
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Equation (4) is called the discrete velocity model (DVM). This equation can be 

solved by the standard numerical approaches, for example finite difference method. The LBM 

approach uses this method for discretization of eq. (4): 
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where Dt is the lattice time step, Dx = eaDt – the lattice space step, tm – the lattice relaxation 

time, and x = xi + yj – the a point in the discretized physical space that x, and y
 
are variables 

from (0,n), and (0,m) respectively. Equations (1) and (2) can be derived for the D2Q9 model 

as (without force body): 

 
Figure 2. Discrete velocity 
vectors for the D2Q9 model 

for 2-D LBM 
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 The pressure p satisfies the equation of state as p = 2
sc  and the kinematical 

viscosity n is determined by n = 2
sc (tm – 0.5), where cs = c

1/3 
– the speed of sound. 

Lattice Boltzmann equation of temperature 

Lattice Boltzmann equation of temperature field like velocity field can be considered 

as: 

 eq
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ga is the temperature distribution function in the a direction and th – the relaxation time. eqg  

is the corresponding equilibrium distribution function that can be expressed as [31, 32]: 
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where T is the fluid temperature and can be evaluated from: 
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(15)

 In addition, similar to mass and momentum equations, equation of temperature can 

be obtained as [30]: 
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where s is the diffusivity coefficient which is represented as s = 2

sc (th – 0.5). 

Finally, eq. (10) and (13) is usually solved in two steps: 
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where and ,f g  denotes the post-collision distribution function. Equation (17) is the so 

called collision step. At first step, various fluid particle interactions are modeled like 

collisions and calculated new distribution functions according to the distribution functions of 

the last time step and the equilibrium distribution functions, which are calculated with eq. (6) 
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and eq. (14). The second step is called the stream step. In this step, fluid particles are streamed 

from one cell to a neighboring cell according to the velocity and temperature of the fluid 

particles in this cell. This streaming operation can either be performed as a pushing operation 

from one cell to the surrounding cells or as pulling operation in one cell from the surrounding 

cells. 

Curved boundary treatment 

Consider fig. 3(a) is a part of optional curved wall geometry, where the black circles 

on the boundary xw, the open circles are the boundary nodes in the fluid xf and the grey circles 

show solid area xb. To complete the lattice Boltzmann solution, the b( , )f tx  and b( , )g tx in 

boundaries, are needed. D is defined to evaluate the fraction of crossed link in the fluid area: 

 

f w
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x x
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Figure 3. Figure of lattices in curved wall boundary and bounce back; (a) D = 0.5,(b) D < 0.5, and  

(c) D > 0.5 

 

The standard (half-way) bounce back no-slip boundary condition always assumes a 

delta value of 0.5 to the boundary wall, fig. 3(b). Due to the curved boundaries, delta values in 

the interval of (0, 1) are now possible. Figure 3(c) shows the bounce back behavior of a 

surface with a delta value smaller than 0.5 and fig. 3(d) shows the bounce back behavior of a 

wall with delta bigger than 0.5. In all three cases, the reflected distribution function f (x,t + Dt) at 

xf is unknown. Since the fluid particles in the LBM are always considered to move one cell 

length per time step, the fluid particles would come to rest at an intermediate node xi. In order 

to calculate the reflected distribution function in node xf, an interpolation scheme has to be 

applied [33]. 
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Velocity and temperature in curved boundary condition 

To calculate the distribution function in the solid region b( , )f t x  based upon the 
boundary nodes in the fluid region, the bounce back boundary conditions combined with 
interpolations including a one-half grid spacing correction at the boundaries [30, 33]. Then the 
Chapman-Enskog expansion for the post-collision distribution function on the eq. (17a) is 
conducted as: 

b f b f w2
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ubf and uw indicate imaginary velocity for interpolations and the velocity of wall. This study 
used the method is based on the reported method in [34] for temperature field in curved 
boundary. Distribution function for temperature divided two parts, equilibrium and non-equi-
librium: 

 
eq neq

b b b( , ) ( , ) ( , )g t g t g t   x x x

 

(23)

 By substituting eq. (23) in eq. (17b) we have: 
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Obviously to calculate ( , )bg t t  x , both ( , )

eq
bg t x and neqg (xb, t) are required. 

Equilibrium and non equilibrium parts of eq. (24) are define as: 
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In order to calculate accurate forces on the moving walls, the momentum exchange 

method is used, which already showed good results in [33]. The momentum exchange method 

for the LBM is based upon the transfer of momentum by fluid particles to a particle surface 

after the streaming step. 

The total force acting on a particle is then calculated as: 

 
8

b f f
x 1

[ ][F = (x , ) (x , ) 1 (x )]
ball

e f t f t w  
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where, w(xf) is an indicator which is 0 and 1 when xf

 
location is occupied by fluid and solid, 

respectively. 

Multi-relaxation-time model 

The multi-relaxation-time lattice Boltzmann equation reads: 
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The nine eigenvalues of matrix [S] are all between 0 and 2 so as to maintain linear 

stability and the separation of scales, which means that the relaxation times of non-conserved 

quantities are much faster than the hydrodynamic time scales. Equation (10) is the special 

case in which the nine relaxation times are all equal, and the collision matrix [S] = l/tm[I], 

where [I] is the identity matrix. Like eq. (17), eq. (30) includes two steps, collision and 

streaming: 
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The collision step can be mapped to the momentum space by multiplying through by 

a transformation matrix [M] and the streaming is still finished in the velocity space. The 

multiple-relaxation-time lattice Boltzmann equation, eq. (30) becomes: 
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where f = [M]f and the bold-face symbols denote 9 dimensional column vectors, e. g. f(x,t) = 

[f0(x,t), f1(x,t),…, f8(x,t). The collision matrix [S] = [MSM]
–1

 in moment space is a diagonal 

matrix given by: 
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and f

eq
 is the equilibrium value of the moment f. The transformation matrix [M] can be 

constructed via the Gram-Schmidt orthogonalization procedure. Ginzburg [35] has been 

proposed the general form of the transformation matrix. Following the method by Ginzburg, 

the transformation matrix [M] of multi-relaxation-time model is obtained: 
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The corresponding equilibrium distribution functions in moment space ˆeqf are given 

by: 
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In Lallemand et al. [36], it was shown that for the multi-relaxation-time (MRT) 

model to give the same shear viscosity as given by 2 ( 0.5)s mc   for the single-relaxation-

time model, one can set: 
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1
s s


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It is necessary to choose the rest of the relaxation parameters, s2, s3, s5, and s7. In 

general, these four parameters can be chosen to be slightly larger than 1. Figure 4 shows the 

comparison of performance of MRT and single-relaxation time (SRT). This figure shows the 

time historic of drag coefficient for Re = 50, K = 0.1, and b = 1. As it can be seen, the results 

of SRT consequently time is very noisy rather than MRT results, consequently time-average 

drag coefficient has accurate quantity. 

 

 
 
 

 

Figure 4. Comparison 
of drag coefficient as a 
function of time 

between (a) SRT and 
(b) MRT, for  
Re = 50, K = 0.1,  

b = 1 
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Verification and simulation 

Figure 1 shows the computational domain of flow and heat transfer around a rotating 

isothermal circular cylinder of diameter D with uniform-shear flow in entrance and co-ordi-

nates system. The initial values of velocity field are ux(x,y) = Uc, y ( , )u x y  = 0.The following 

dimensionless numbers are used to show the results: 

 
c c

22 2
, , , , ,

c

T Tu vyUt x
t x y u v T

D D D U U T T

      
     


 (38) 

 
To verify this study, flow around a rotating circular cylinder with constant velocity 

inlet and temperature is simulated. In a rectangular domain, the origin is located at the centre 

of the circular cylinder and the co-ordinates x and y are taken, respectively, to be measured 

along the horizontal and vertical directions. The upper and lower boundaries are set as free-

slip velocity boundaries. At the inlet, fluid enters in x-direction in the domain with constant 

temperature and uniform velocity Uc and exits with fully developed profile.  

The evolution of wake flow pattern around the cylinder at Re = 200, b = 0.5 for 3 

different t
*
 is represented in fig. 5. Figures 5(a) and 5(b) show the streamlines obtained by 

present study and experimental results of Coutanceau et al. [6], respectively. The comparison 

between obtained results and experimental results shows good agreement in formation of 

wakes. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Comparison 
between the evolution of the 

velocity field for  
Re = 200, and b = 0.5  
(a) obtained by present 

computation and  
(b) experiment [6] 
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Variations of *u  and *v with time are compared with the experimental results of 

Coutanceau et al. [6] in fig. 6. These results are presented at Re = 200 and  b = 0.5 at different 

t
*
. The comparison indicates that the results have noticeable agreement with experimental 

data. Because of the lack of available experimental and numerical data for heat transfer, the 

results of present study are compared with those of numerical simulation of finite volume 

method (FVM) [37] and LBM [34] for the same problem at Re = 200, b = 0.5, and Pr = 0.5.  

 

 

 
Figure 6. Time development of velocity profiles on x-axis for Re = 200 and b = 0.5; (a) u*and (b) v* 
obtained by experiments (symbols) [6] and present study (lines) 

 

 

The comparison of temperature 

profiles obtained by present study and the 

FVM [37] is shown in fig. 7. Clearly, the 

two results are coherent however it is 

more difficult to handle this type of rotat-

ing boundary conditions in this FVM 

study. Figure 8 shows the growth of tem-

perature contours with velocity stream-

lines at Re = 200, b = 0.5, and Pr = 0.5. 

The comparison between present study 

results and those obtained by Yan et al. 
[34] shows good agreement in formation 

of wakes.  

To check more accordance of heat 

transfer of the present study and experi-

mental data, fig. 9 shows the distribution 

of period averaged Nusselt number on the surface of the cylinder. These results are compared 

with the results of Eckert et al. [38] that are calculated at Re = 218, b = 0.0, and Pr = 0.71. 

 
 

 
Figure 7. Comparison of temperature distributions 
on x-axis obtained by present study (symbols) and 

FVM (lines) [37] at Re 200, b = 0.5, and Pr = 0.5 
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Figure 8. Comparison between the evolution of the temperature field for Re = 200, b = 0.5, and Pr = 0.5 

obtained by (a) present study and (b) previous numerical study [34] (color image see on our web site) 

 

 

 
 
 

 
 
 

 
 
Figure 9. Distribution of period-averaged Nusselt 

number on the cylinder surface at Re = 218, b = 0,  
and Pr = 0.71 
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Results and discussion 

After verifying the numerical method, we have conducted numerical simulations at 

various range of Reynolds number (50 £ Re £ 160), three rotational speed ratios of 0, 0.5, and 

1 at shear rate K = 0.1, blockage ratio B = 0.1 and Pr = 0.71. 

Isotherms and vorticity contours 

Figure 10 shows the variations of the vortex-shedding frequency with the Reynolds 

number and rotational speed ratio in uniform-shear flow over a rotating circular cylinder. 

According to fig. 10(a), with increasing Reynolds number, the shedding frequency markedly 

increases all over the ranges of the rotational speed ratio considered in the present study. Such 

correlation between the shedding frequency and Reynolds number agrees well with those of 

Kang [39]. On the other hand, the shedding frequency slightly increases with increasing 

rotational  speed  ratio. In  the  laminar regime, the  effect of  Reynolds number on the vortex-

-shedding frequency is overall very strong compared with those of other parameters. To more 

closely reveal the rotating effect, the variation of the shedding frequency with the rotational 

speed ratio is presented in fig. 10(b) for the uniform-shear flow at difference Reynolds 

numbers. The effect of Re  number on instantaneous vorticity contours ( )z and isotherms 

are shown in fig. 11. As it can be seen in fig. 11, vortex formation for different Re and at a 

specific time is shown. At Re 50 vortex core stretches and does not allow the vortex to 

shed. Increasing the Re  number decrease the length of vortex core, hence the shedding 

frequency increases. As both vorticity and thermal energy are transported by the flow, the 

vorticity contours and the isotherms exhibit similar features. Figure 12 shows the effect of 

rotational speed ratio ( )  on flow and heat transfer fields. Vorticity contours at left and the 

isotherms at right for Re = 160, Pr = 0.72, and shear rate K = 0.1 are shown in fig. 12. The 

cylinder does not rotate when b = 0, the vortices are asymmetric and shed alternatively 

downstream and meanwhile the heat advects to the downstream similar to the vortices, fig. 

12(a). When b  0, differences in the vorticity and isotherm contours become obvious. 

Because the upper side of the cylinder moves against the stream whereas the lower one moves 

 
Figure 10. Vortex-shedding frequencies (Sr) with respect to  (a) Re and (b) β 
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in the direction of stream the wall shear gradient is asymmetrical. Evidently, the periodic 

vortex shedding still remains. Besides advection of vorticity, also heat is advected into the 

cylinder wake as can be seen in fig. 12. 

 

 
Figure 11. Vorticity (on the left) and isotherms (on the right) contours for Pr = 0.71 and b = 0.5  

at t* = 355; (a) Re = 50, (b) Re = 80, (c) Re = 120, and (d) Re = 160 

 

 
Figure 12. Vorticity (on the left) and isotherms (on the right) contours for Pr = 0.71 and Re = 160  
at t* = 660; (a) b = 0, (b) b = 0.5, and (c) b = 1  
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The heat is advected from cylinder wall in the near wake is a way similar to the 

advection of vorticity. The similarity between advection of vorticity and heat implies that the 

vortex structures are hot isolated areas with a strong circulation. However, one of the 

differences which can be observed is the size of the hot core and the vortex structure. As can 

be seen, the hot core is more compact than the vortex structure. Due to the fact that heat is 

captured in the kernel of the vortex structure, only diffusion process can cause the hot core to 

spread. 

Force acting on cylinder 

To examine the Re  number and rotational speed ratio ( )  effects on the force 

acting, the time average and time historic values of drag and lift coefficients are shown in 

figs. 13, 14, and 15. Obviously fig. 13 shows that DC
 
and LC values do not change 

significantly at different Re numbers. The maximum variation is 6.5% and 7% for DC and
 

LC
,
respectively. 

 

 

Figure 13. Time-averaged lift and drag coefficients as a function of Reynolds number for 
different rotational speed ratios: (a) CL and (b) CD 

 

 
Figure 14. Time-historic lift and drag coefficients at different Reynolds numbers for  

b = 0.5; (a) CL  and (b) CD 
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Figure 15. Time-historic lift and drag coefficients for different rotational speed ratios at  
Re = 160; (a) CL and (b) CD 

 

It should be mentioned that, because of the counterclockwise rotation of the 

cylinder, the time averaged lift coefficient, LC  for all b
 
are less than zero. The negative value 

for 
LC at 0  is due to the shear effect that results the pressure over the top part of cylinder 

becomes higher than that under the bottom part. As it can be seen in fig. 13(b), when b 

increases from 0 to 1 
DC  decreases. It's due to the significantly reduce of wake length behind 

the cylinder as a result of the cylinder rotation. It should be mentioned that the rotation of 

cylinder accelerates the detachment of vortices. Figure 14 shows time historic values of drag 

and lift coefficients for Re = 160 and different b. As can be seen, for lift coefficient the 

amplitude of the oscillation increases while the mean values do not change noticeably, and for 

drag coefficient the changes of amplitude of the oscillation and mean values are negligible. In 

contrary, the rotational speed ratio changes the mean value of the lift coefficient meanwhile 

the amplitude of oscillation does not change significantly as shown in fig.15. 

Nusselt number variations 

The variation of local Nusselt number for 

different Re at t
*
 = 355 are shown in fig. 16. It 

can be seen from the figure that, for all four 

different Re numbers, there are two local 

minimum and one maximum. Due to the smaller 

thermal resistance, the local Nu at the forward 

stagnation point is highest and decreases up to 

the point of separation. In the wake region, 

where the vortices are formed and shed, a 

further increase in Nu number can be seen 

because of good mixing. Due to the influence of 

vortex shedding, the local Nu number distribu-

tion in the wake region varies temporally. How-

ever, these variations are averaged out for the 

purpose of comparison. Figure 17 depicts the 

 
Figure 16. Local Nusselt number at t* = 355 
for b = 0.5 and different Reynolds numbers 
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periodic average Nu number variation with rotational speed ratio at Re = 50 and 160. It is 

expected that the peak of the Nu distribution shifts to the right, due to the rotation of cylinder, 

but the maximum value stays at q = p as a result of the shear effect. The rotation of the 

cylinder pushes forward the point of flow separation, hence, the minimum point of Nu 

distribution on the cylinder surface shift to the right. 

 

 
Figure 17. Periodic averaged Nusselt number for different rotational speed ratios b;  
(a) Re = 160 and (b) Re = 50 

 

For better discussion present investiga-

tion is concluded by exploring the effect of 

Re number and rotational speed ratio on the 

period-surface average Nu number outcome 

as indicated in fig. 18. As it mentioned 

before the effect of Reynolds number on the 

vortex-shedding frequency is overall very 

strong in compare with rotational speed 

ratio. It is concluded that the Re number 

increment, increases the period-surface 

average Nu number due to the good mixing 

of the vortices and the high shed frequency. 

Although the increase of the rotational speed 

ratio increases the Nu, but it is slight in 

compare with Re number.  

Conclusions 

The present study has applied lattice Boltzmann method to simulate numerically 

two-dimensional laminar flow and heat transfer over a rotating circular cylinder with a 

uniform planar shear, where the free-stream velocity varies linearly across the cylinder using 

MRT method. The range of Reynolds numbers 50 ≤ Re ≤ 160 for three rotational speed ratios 

of 0, 0.5, and 1, and K = 0.1 are investigated. The results show that in the laminar regime, the 

effect of Reynolds number on the vortex-shedding frequency is overall very strong compared 

 
Figure 18. Periodic and surface averaged 

Nusselt number at different rotational 

speed ratios b and Reynolds numbers 
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with rotational speed ratio. The results of SRT are very noisy rather than MRT results; 

consequently accuracy of MRT model is more than SRT model. In addition variation of 

DC and LC values strongly depends on rotational speed ratio (b) and do not change 

significantly with Reynolds number. In heat transfer field it is expected that the peak of the 

Nu distribution shifts to the right, due to the rotation of cylinder, but the maximum value stays 

at q = p as a result of the shear effect. The rotation of the cylinder pushes forward the point of 

flow separation, hence, the minimum point of Nu distribution on the cylinder surface shift to 

the right. 

Nomenclature 

B  –  non-dimensional parameter – blockage  
 –  ratio [D/W], [–] 

DC  –  drag coefficient [(= 2Fx/(ρUcD)], [–] 

LC  –  lift coefficient [(= 2Fy/(ρUcD)], [–] 

sc  –  speed of sound in lattice scale, [–] 
D  –  diameter of cylinder, [m] 

ie  –  discrete lattice velocity in direction i, [–] 
F  –  force, [N] 

xF  –  force in x-direction, [N] 

yF  –  force in y-direction, [N] 

if  –  velocity distribution function  
 –  (pre-collision), [–] 

if  –  velocity distribution function  
 –  (post-collision), [–] 

eq
if  –  equilibrium distribution function of  

 –  velocity, [–] 
G  –  lateral velocity gradient (= dU/dy), [s–1] 

ig  –  temperature distribution function  
 –  (pre-collision), [–] 

ig   –  temperature distribution function  
 –  (post-collision), [–] 

eq
ig  –  equilibrium distribution function of  

 –  temperature, [–] 
gy   –  acceleration due to gravity, [ms–2] 
K   –  non-dimensional velocity gradient or 
 –  shear rate (= DG/Uc), [–] 
Nu   –  local Nusselt number 
 –  [(=  D(¶T/¶n)cylinders surface/(Th – T)], [–] 

Nu   –  period-surface average Nusselt number 
 –  [tp p

1/ d ]
ptt Nu t , [–] 

 

Pr   –  Prandtl number (= ν/α), [–] 
Re   –  Reynolds number (= UcD/ν), [–] 
T   –  temperature, [K] 
t   –  time, [s] 

hT   –  hot temperature, [K] 

cT   –  cold temperature, [K] 

cU   –  stream wise velocity at the  
 –  center-line, [ms–1] 
U  –  inlet velocity profile (= Uc + Gy), [ms–1] 

,u v   –  horizontal and vertical components of  
 –  the velocity, [ms–1] 
W   –  lateral width, [m] 

kw  –  weighting factor, [–] 
x   –  horizontal direction, [m] 
y   –  vertical direction, [m] 

Greek symbols 

   –  rotational speed ratio (= Dω/2Uc), [–] 

   –  kinematic viscosity, [m2s-1] 
   –  density, [kgm–3] 

m   –  lattice relaxation time for f, [–] 

h   –  lattice relaxation time for g, [–] 
   –  angular velocity of the cylinder, [s–1] 

Subscripts 

c  –  cold 
h  –  hot 

i  –  spatial indices 
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