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This study theoretically analyzes the heat transfer effects in a three
dimensional Couette flow through a composite parallel porous plate channel
partly filled by a porous medium. The flow is three dimensional in the
channel because of the application of a transverse sinusoidal injection
velocity of a particular form at the lower stationary plate. The governing
equations are solved using a perturbation series expansion method. The
effects of various flow parameters such as, Prandtl number (Pr),
suction/injection parameter (1), permeability of the porous medium (K),
heat source parameter (S), and viscosity ratio parameter (¢ ), are
investigated on temperature distribution in the composite channel and rate
of heat transfer at the upper moving plate and at the fluid-porous medium
interface, and discussed graphically.
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1. Introduction

The viscous fluid flow and heat transfer in porous medium is a topic of current research
interest because of its numerous engineering, industrial and environmental applications. Such
problems of flow and heat transfer through a wall-bounded porous medium in various types of ducts
and channels, have been modeled using some variation of extended Darcy’s equation, which describes
a balance among pressure gradient, viscous transfer of momentum, linear or/and quadratic drag forces,
by several researchers, e.g. Durlofsky and Brady [1], Kladias and Prasad [2], Vafai and Kim [3],
Nakayama et al. [4], Nield et al. [5], Al-Hadhrami et al. [6], Kim and Russell [7], Nield et al. [8],
Hooman et al. [9], Chauhan and Kumar [10].

The viscous fluid flow induced by a shearing motion of a wall in parallel-plate channel has
been the subject of extensive research because of its numerous applications in many branches of
science and technology. The velocity field for such flow usually serves a starting estimate for the
velocity of more complex flows induced by convection and various boundary conditions. One of the
fundamental fluid flow situations in porous medium and in channels partly filled with a porous
substrate, is the Couette flow. Investigation of heat transfer in such flow in the presence of a porous
medium has many important industrial applications, such as in chemical reactors, heat exchangers,



cooling and ceramic processing. Bhargava and Sacheti [11] examined heat transfer effects in Couette
flow of two immiscible fluids through a porous channel using Darcy extended Brinkman equation to
govern the flow. Daskalakis [12] studied Couette flow through a porous medium saturated by a high
Prandtl number fluid and temperature dependent viscosity. Non-Darcy Couette flow is investigated by
Nakayama [13] through a porous medium filled with an inelastic non-Newtonian fluid. Chauhan and
Shekhawat [14], Chauhan and Vyas [15], investigated heat transfer effects in Couette flow of a
compressible fluid in the presence of a naturally permeable boundary. Chauhan and Soni [16]
examined parallel flow convection effects on Couette flow over a highly permeable bed. Kuznetsov
[17] investigated analytically heat transfer effects in Couette flow in a porous medium using Darcy
extended Brinkman-Forchheimer equation of momentum. Kuznetsov [18, 19] also analyzed fluid flow
and heat transfer in Couette flow in a channel partly filled with a porous medium and partly with a
clear fluid. Singh [20], Govindarajan et al. [21], Dass et al. [22] studied three-dimensional Couette
flow and heat transfer in parallel-plate channel.

In this research, heat transfer effects are analyzed in three-dimensional Couette flow of a
viscous fluid through a channel partly filled with a porous medium and partly with a clear fluid. In the
composite channel lower part is occupied by a porous medium bounded by a porous plate where a
transverse sinusoidal injection velocity is applied, and the upper part of the channel is occupied by a
clear fluid. The upper porous plate of the channel moves with a constant velocity and a constant
suction velocity is applied at it. The two boundary plates of the channel are kept at constant but
different temperatures. The effects of the various parameters are examined on the temperature
distribution and heat transfer rate.

2. Formulation of the problem

We consider viscous fluid Couette flow through a channel bounded by two infinite parallel
porous plates, which are maintained at constant but different temperatures. The lower stationary
porous plate is maintained at a temperature T,', and a porous layer of thickness ‘h’, is attached to it
while the upper porous plate is maintained at a temperature T,’, and it moves at a constant distance ‘d’
from the porous medium interface with constant velocity ‘Uy’. It is also subjected to a constant suction
velocity ‘Vy’. The lower porous plate is subjected to a transverse sinusoidal injection velocity of the
following form:

V =V, (1+£cos(zz/d)), (1)

where ¢ is a positive modulation parameter and & <1. The surface of the porous layer is taken
horizontal in x—z plane. The x-axis is taken in the flow direction and the y-axis is taken normal to the
porous layer interface. Let (u,v,w,t) and (U,V,W,T) be the velocity and temperature components
for the clear fluid region and porous medium region, respectively. All physical quantities are

independent of x, since the channel is infinite in the x-direction.
We introduce the following non-dimensional quantities:

y'=y/d, 7 =z/d, u" =uN,, V' =Ny, W =wN,, UT=UN, VT =V N W =W/)V,,
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(2)
where, p, the pressure in clear-fluid region; P, the pressure in porous region; p, the density; and K, is
the permeability of the porous medium.

Using above non-dimensional quantities, the governing dimensionless equations of the present
problem, for flow and temperature distribution after dropping asterisks for convenience, are given by

6V8W

ay o =0, ®)
2 2
V@_u+wa_u_£6_l: ou (@)
oy ar Aoyt et
2 2
o 10 O ®
oy ez oy Aoyt o
2 2
V@+W8\N ap+£ 6_W+6_W (6)
oy o oz Aley? oz
2 2
vﬂ+wﬂ=i a—£+a—£ +St, (7
oy oz APr{oy® oz
%ﬁ%:o, ®)
4
2, 2
@[gy_%%j}%:o, ©)
2 2
@(gy_vg_vng (10
2 2
@[iy"l'+aa"2v)—"%=ig—':, (1)



2 2
Va_T+W8_T: %, (8T +8TJ+ST.

oy oz APrloy? oz (12)

The corresponding dimensionless boundary and matching conditions of the present problem are given
by

y=1: u=A v=1 w=0, t=]1
y=0: u=U, v=V, w=W,

T, p-=
u_,ou (v aw)_ (v aw) a _
YT (6z+ayJ ( ] ¢2

y=-a: U=0, V=(1+ecoszz), W=0, T=0, (13)

where, ¢ =1/ p1; A=Vyd/v; A=Uy N, ; Pr=pvC, /k; ¢, =k/k; S=Qd/pC Ny ; v=p/p.

Here, u, the viscosity; u, the effective viscosity of the fluid in porous medium; v, the kinematic
viscosity; ¢,, the viscosity ratio; k, the thermal conductivity; k , the effective thermal conductivity of
the fluid in porous medium; ¢,, the thermal conductivity ratio; Cy, specific heat at constant pressure;
Q, the heat source/sink; S, the source/sink parameter; Pr, the Prandtl number; and A is the injection
parameter.

3. Solutions

The flow problem can be solved by the perturbation series method, for very small values of
the parameter &(<1). We write

u(y,z) =Uy(y) +eu,(y, 2) + &%, (Y, 2) +.... (14)

and similar expressions for v, w, U, V, W, p and P.
Here zeroth order solution (g=0) is simply the two dimensional coupled Couette flow in the
channel with constant suction at the top and constant injection at the bottom. When & # 0, we assume

u (y,z)=uy(y)coszz,

v (y.z)=vy(y)cosrz,

1, ..
wi(y,z) =—;v11(y)sm 7z,
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V;(y,z)=Vy(y)coszz,
1., .
W (y,2)= —;Vll(y)sm 7z,

R(y,z)=Ry(y)coszz.

Velocity and pressure distributions are obtained under the corresponding boundary conditions,
(Chauhan and Kumar [23]).

3.1 Heat Transfer Analysis
For solving the energy equations (7) and (12), we write

t(y,2) =ty (y) + ety (y)cos zz, (15)
T(y,z)=Ty(y)+&T,(y)cosrz. (16)

Substituting (15) and (16) into equations (7), (12) and the corresponding boundary conditions
(13), comparing the coefficients of equal powers of & on both sides, and then solving the resulting set
of ordinary equations under the corresponding boundary conditions, we obtain

t(y.z)=aexp(ay)+a,exp(ayy)+&(as exp(asy)+as exp(a,y))cos 7z
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and a, a,, a5,8,,8s;, &, &,, 8 are constants of integrations. These constants have been obtained by the
boundary and matching conditions and are reported in the Appendix.

The dimensionless rate of heat transfer at the moving plate and at the fluid-porous medium
interface, are given by
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4. Discussion

Figure 1 depicts the temperature distribution in the channel for different values of the Prandtl
number Pr. On comparing the various curves in the fig., it is observed that the effect of Prandtl
number is to decrease the temperature at all points in the flow field of the composite channel. In fact,
the thermal conduction, in flow field of both the regions, is lowered as we increase the value of the
Prandtl number, and there is a decrease in the molecular motion of the fluid elements, consequently
the temperature falls in the channel. Figure 2 shows the effect of suction/injection parameter A on the
temperature distribution in the channel. When A is very small, the temperature profile is nearly linear.
As the value of A increases, more amount of fluid is pushed into the channel through the lower plate,
causing a decrease in temperature at all points in the channel. Figure 3, however, shows that the source
parameter S increases the temperature in the channel at all points.
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Fig. 1. Temperature profile againsty for 4=0.5, S=-0.5, a=0.2, ¢, =1.666, K=0.1, ¢, =1.25
=01, z=0.
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Fig. 2. Temperature profile againsty for Pr=2, S=-0.5, a=0.2, ¢, =1.666, K=0.1,¢, =1.25
=01, z=0.
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Fig. 3. Temperature profile againsty for A=1, Pr=7, a=0.2, ¢, =1.666, K=0.1, ¢ =1.25
=01, z=0.

The variations in temperature profiles in the composite channel for different values of the
permeability K and viscosity ratio ¢ are depicted in tab. 1 and 2 respectively. It is found that
temperature increases in the composite channel at each y as the permeability K increases. Since the



porous layer is highly permeable, increase in the value of K causes increase in the flow velocity and so
due to friction temperature in the channel also rises. Similarly increase in the viscosity ratio parameter
@, causes rise in the temperature in the channel.

Table 1. Temperature distribution for Pr=2,S=-0.5,a=0.2,¢, =1.666,4=0.5, ¢, =1.25,
¢=0.1, z=0.

Y K=0.0001 K=0.001 K=0.01 K=0.1 K=1
-0.2 0 0 0 0 0
-0.1 0.026363  0.026372  0.026393  0.026401  0.026403

0 0.054523  0.054548  0.054598  0.054618 0.05462
0.1 0.106309  0.106357  0.106445  0.106477  0.106481
0.2 0.16437 0.164442  0.164567 0.16461 0.164616
0.3 0.229633  0.229725  0.229876  0.229928  0.229935
0.4 0.303158  0.303261  0.303427  0.303482  0.303489
0.5 0.38616 0.386265  0.386431  0.386486  0.386493
0.6 0.480036  0.480133  0.480284  0.480334 0.48034
0.7 0.586383  0.586464  0.586588  0.586629  0.586634
0.8 0.707035  0.707093  0.707181 0.70721 0.707214
0.9 0.844098  0.844128  0.844174  0.844189  0.844191

1 1 1 1 1 1

Table 2. Temperature distribution for Pr=2,S=-0.5,a=0.2, ¢, =1666, 4 =0.5, K=0.1,

=01, z=0.

y ¢ =1 ¢ =125 ¢ =2 ¢ =4 ¢ =6
-0.2 0 0 0 0 0
-0.1 0.026399 0.026402 0.026412 0.026428 0.026436

0 0.054611 0.054619 0.054641 0.054674 0.054691

0.1 0.106466 0.106479 0.106513 0.106566 0.106593
0.2 0.164595 0.164613 0.164659 0.164728 0.164762
0.3 0.229911 0.229932 0.229985 0.230065 0.230104
0.4 0.303463 0.303487 0.303543 0.303627 0.303668
0.5 0.386467 0.38649 0.386545 0.386627 0.386667
0.6 0.480317 0.480338 0.480388 0.480461 0.480497
0.7 0.586615 0.586632 0.586673 0.586733 0.586762
0.8 0.7072 0.707212 0.707241 0.707283 0.707304
0.9 0.844184 0.84419 0.844205 0.844227 0.844238
1 1 1 1 1 1



Figure 4 and 5 shows the variation of the rate of heat transfer at the upper moving plate and at
the porous interface. We see that the Prandtl number (Pr) is found to enhance the rate of heat transfer
at the upper moving plate of the channel. So is the case with the suction/injection parameter A, where
as Pror A decreases the rate of heat transfer at the fluid-porous medium interface. Further it is noticed
that heat source parameter causes decrease in the rate of heat transfer at the upper plate, while reverse
effects observed at the fluid-porous medium interface.

Fig. 4. Rate of heat transfer against Pr for K=0.1, £=0.1, ¢, =1.25, a=0.2, S=-0.5,2=0.

Fig. 5. Rate of heat transfer against Pr for K=0.1, £=0.1, ¢, =1.25, a=0.2, A=0.5,2=0.



Table 3(a-b) and 4(a-b) depict the effects of the permeability K and the viscosity ratio
parameter ¢, as the rate of heat transfer at the upper moving plate and at the porous interface. It is
found that the rate of heat transfer increases with the increase in the value of K or ¢ at the fluid-
porous interface, whereas opposite results are observed at the upper moving plate.

Table 3(a) Rate of heat transfer at the upper plate, t’(l) for A=05=01¢ =125 a=0.2
S=-0.5.

Pr K=1 K=0.1 K=0.01 K =0.001
0.71  1.148549 1.148555 1.148604 1.148755
1 1.258733 1.258743 1.258813 1.259033
2 1.661271 1.661291 1.661447 1.66193
5 3.018797 3.018853 3.019283 3.020632
7 3.991178 3.991254 3.99184 3.993687

Table 3(b) Rate of heat transfer at the upper plate, t'(1) for 1=05,£=0.1, K=0.1, a=0.2,
S=-05.

Pr ¢=125 4 =2 4 =4 4 =6
0.71 1148555  1.148506  1.148434  1.148399
1 1258743 1258671 1258567  1.258516
2 1661291  1.661136  1.660908  1.660797
5 3018853  3.018426  3.017802  3.017498
7 3991254  3.990673  3.989829  3.989418

Table 4(a) Rate of heat transfer at the upper plate, t'(0) for 1=05,=0.1,¢ =125, a=0.2,
S=-05.

Pr K=1 K=0.1 K=0.01 K =0.001
0.71  0.729661 0.729653 0.729596 0.729437
1 0.669473 0.669463 0.669388 0.669175
0.489955 0.489938 0.489817 0.489473
0.169944 0.169926 0.169789 0.169401
0.077553 0.077539 0.077439 0.077151

~N o N



Table 4(b) Rate of heat transfer at the upper plate, t’(O) for A=05,=0.1K=0.1, a=0.2,
S=-0.5.

Pr 4 =125 4 =2 4 =4 4 =6
071 0729653 0.729712  0.729803  0.729848

1 0669463 0.669542 0.669662  0.669723
0489938  0.490065  0.49026  0.490357
0.169926  0.170068  0.170286  0.170395
0.07754  0.077644  0.077805  0.077885

~N o1 N
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