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The aim of the present numerical study is to investigate the effect of 

thermally active zones and direction of the external magnetic field 

on hydromagnetic convection in an enclosure.  Nine different 

relative positions of the thermally active zones are considered. Top 

and bottom of the enclosure are adiabatic. The governing equations 

are solved by the finite volume method. The results are obtained for 

different directions of the external magnetic field, thermally active 

locations, Hartmann numbers, Grashof numbers and aspect ratios.  

It is observed that the heat transfer is enhanced for heating location 

is either at middle or at bottom of the hot wall while the cooling 

location is either at top or at middle of the cold wall. The flow field 

is altered when changing the direction of the magnetic field in the 

presence of strong magnetic field.  The average Nusselt number 

decreases with an increase of the Hartmann number and increases 

with increase of the Grashof number and aspect ratio. 

 

Key words: Natural Convection; Magnetic field; Partially active 

walls; Finite volume method; Enclosure. 

 
1. Introduction 

 

  Natural convection  in  rectangular enclosures with partially heated or partially cooled 

vertical walls while the other two walls are kept adiabatic is of special interest in many 

engineering applications such as solar receivers, solar passive design and cooling of electronic 

equipment. A detailed study of the convective flow and heat transfer in a partially 

heated/cooled enclosure is very helpful to understand the complex phenomena of natural 

convection in practical applications. Kuhn and Oosthuizen [1] numerically studied unsteady 

natural convection in a partially heated rectangular enclosure. They found that the average 

Nusselt number increases to maximum and then decreases when the heater location moves 

from the top to bottom. Tanda [2] numerically analyzed laminar natural convection of air in 

open vertical channels with partially heated walls. In this study, both uniform wall 
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temperature and uniform heat flux boundary conditions are studied. Valencia and Frederick 

[3] studied natural convection of air in a square cavity with half-active and half-insulated 

vertical walls. They considered five different thermally active locations.  Natural convection 

in a rectangular enclosure with four discrete heaters is investigated numerically and 

experimentally by Ho and Chang [4].   

  Convective flow in a partially heated and partially cooled cavity is numerically 

analyzed by Yucel and Turkoglu [5]. They observed that the mean Nusselt number decreases 

with increasing the heater size for a given cooler size. On the other hand, the mean Nusselt 

number increases with increasing the cooler size for a given heater size. Numerical 

simulations of laminar natural convection in a partially cooled differentially heated cavity are 

performed by El-Refaee et al. [6]. They found that the rate of heat transfer reaches its 

maximum value when the cavity is vertical with aspect ratio unity. Nithyadevi et al. [7] and 

Kandaswamy et al. [8] studied the natural convection in a square cavity with partially 

thermally active vertical walls. They considered nine different thermally active locations. 

Chen and Chen [9] numerically studied natural convection in a cavity with partially heated on 

the left and bottom walls. They found that the heat transfer rate is increased with increasing 

the length of the heat source. Oztop and Abu-Nada [10] numerically investigated convection 

of nanofluids in a partially heated rectangular enclosure. They found that the heater location 

influences on flow field and temperature distributions. Arici and Sahin [11] numerically 

investigated natural convection in a partially divided trapezoidal enclosure with summer and 

winter conditions. They found that the heat transfer results are not significantly altered by the 

presence of divider for summer condition.  

  Sivakumar et al. [12] numerically studied the mixed convection in a lid-driven cavity 

with different lengths and locations of the heater. They found that the heat transfer rate is 

enhanced when the location of heater is at middle or top on the left wall of the cavity. Natural 

convection flow inside a prismatic cavity has been numerically examined by Aich et al. [13]. 

They found that flow and temperature fields are strongly affected by the shape of the 

enclosure. Delavar et al. [14] investigated the effect of the heater location on flow pattern and 

heat transfer in a cavity using lattice Boltzmann method.  The results show that higher heat 

transfer is observed from the cold walls when the heater located on vertical wall. 

Sivasankaran et al. [15] numerically studied the effect of discrete heating on natural 

convection in a porous enclosure. They concluded that the heat transfer rate is high at both 

heaters for smaller heater length ratio. Recently, Sankar et al. [16] numerically investigated 

natural convection in a porous cavity with partially thermally active walls. Terekhov et al. 

[17] made a numerical simulation on buoyant convection in a square enclosure with multiple 

partitions. Their result shows that the Nusselt number increases significantly with an increase 

in heat conductivity coefficient of partitions. Bhuvaneswari et al. [18] numerically analyzed 

the effect of aspect ratio on convection in a rectangular cavity with partially thermally active 

walls. They found that the heat transfer rate is decreased on increasing the aspect ratio.   

  Convective heat transfer in the presence of a magnetic field have been used 

extensively in many applications such as crystal growth, geothermal reservoir, metallurgical 

applications involving casting and solidification of metal alloys. Rudraiah et al. [19] 

numerically investigated the effect of the magnetic field on natural convection in a 
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rectangular enclosure. They found that the rate of heat transfer decreases in the presence the 

magnetic field. Khanafer and Chamkha [20] numerically studied hydromagnetic convection 

of a heat generating fluid in an inclined square porous cavity saturated with an electrically 

conducting fluid.  They found that the heat transfer rate is reduced by the effect of the 

magnetic field. Qi et al. [21] studied natural convection in a cavity with partially heated from 

below in the presence of an imposed non-uniform magnetic field. They found that the velocity 

decreases with increasing the magnetic field strength. Hossain et al. [22] numerically 

investigated buoyancy and thermocapillary driven convection of an electrically conducting 

fluid in an enclosure with internal heat generation. They found that increase in the value of 

heat generation causes the development of more cells inside the cavity.  

  Natural convection of an electrically conducting fluid in a laterally and volumetrically 

heated square cavity under the influence of a magnetic field is investigated by Sarris et al. 

[23].  They concluded that the heat transfer is enhanced with increasing internal heat 

generation parameter, but no significant effect of the magnetic field is observed due to the 

small range of the Hartmann numbers. Sivasankaran and Ho [24] numerically analyzed the 

effects of temperature dependent properties on magneto convection in a cavity. They found 

that the heat transfer rate increases with increasing the Rayleigh number and decreases with 

increasing the Hartmann number. Double diffusive natural convection in trapezoidal porous 

cavity in the presence of transverse magnetic field has been studied numerically by Younsi 

[25]. He found that the overall heat and mass transfers decrease on increasing the magnetic 

field. Kolsi et al. [26] studied the effect of an external magnetic field on natural convection of 

liquid metals in a cubic cavity. They observed that the generated entropy is distributed on the 

entire cavity in the presence of a magnetic field.  

  Bhuvaneswari et al. [27] investigated magnetic convection in an enclosure with non-

uniform heating on both walls. They found that the heat transfer rate is increased on 

increasing the amplitude ratio.  Sivasankaran et al. [28] numerically examined the mixed 

convection in a square cavity with sinusoidal temperature on vertical walls in the presence of 

a magnetic field. They revealed that increasing the Hartmann number results in the decrease 

of the total heat transfer rate.  Sivasankaran et al. [29] numerically studied the MHD 

convection of cold water in an open cavity with variable fluid properties. They observed that 

convection is enhanced by thermo-capillary force when buoyancy force is weakened. The 

effect of partition on magneto convection in a cavity is investigated by Sivasankaran et al. 

[30]. They found that the heat transfer rate with a horizontal partition is lower than with a 

vertical partition for given Hartmann and Grashof numbers. 

          To best of our knowledge, natural convection in enclosures with partially active vertical 

walls in the presence of magnetic field has received less attention in literature. Therefore, the 

main objective of the present study is to analyze the effect of the magnetic field and aspect 

ratio on convective flow and heat transfer in a rectangular enclosure with partially thermally 

active vertical walls. 

 

2. Mathematical formulation 
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  The physical configuration under consideration is a two-dimensional rectangular 

enclosure of length L and height H filled with an electrically conducting fluid as shown in Fig. 

1. A portion of the left wall is kept at a constant temperature θh and a portion of the right wall 

is at temperature θc, with θh>θc. The remaining portions in the vertical walls and horizontal 

walls of the enclosure are insulated. Nine different thermally active locations will be studied 

here. That is, the hot region is located at the top, middle and bottom and the cold region is 

moving from bottom to top of their respective walls. It is also assumed that the uniform 

magnetic field B= Bxex+Byey of constant magnitude 2 2( )o x yB B B= +  is applied, where ex 

and ey are unit vectors in the Cartesian coordinate system. The orientation of the magnetic 

field form an angle φ with horizontal axis such that yx BB=φtan .  The electric current J 

and the electromagnetic force F are defined by J=σe(V×B) and F=σe(V×B) ×B respectively. 

The density of the fluid is assumed to be constant inside the enclosure except in the buoyancy 

term, in which it is taken as a function of the temperature through the Boussinesq 

approximation, 0 0[1 ( )]ρ ρ β θ θ= − − , where β  being the coefficient of thermal expansion 

and subscript 0 denotes the reference state. The following assumptions are taken for this study. 

The fluid properties are constant. The flow is two-dimensional, laminar and incompressible. 

The radiation, viscous dissipation, induced electric current and Joule heating are neglected. 

The magnetic Reynolds number is assumed to be small so that the induced magnetic field can 

be neglected compared to the applied magnetic field. 

  The flow of laminar, incompressible, viscous fluid under the above specified 

geometrical and physical condition is governed by the following equations: 
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The appropriate initial and boundary conditions are: 
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  The following non-dimensional variables are used to non-dimensionalise the 

governing equations. 
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ψ
ν

Ψ =  and 
2Lωζ

ν
= . After eliminating the pressure terms, we get the vorticity-stream 

function formulation of the above equations (1) - (4) as follows, 
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  The initial and boundary conditions in the dimensionless form are: 
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  The non-dimensional parameters that appear in the equations are the aspect ratio 

L
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= ,  Hartmann number 
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µ
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ν
α

= . The heat transfer rate across the enclosure is an important 

parameter in thermal engineering applications. The local Nusselt number is defined by 

0Y

T
Nu
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∂= −
∂

 resulting in the averaged Nusselt number as 
2

h

Nu NudX
Ar

= ∫ where h=H/2 

is the height of the heating location. 

 

3. Method of solution 

 

  The non-dimensional governing equations (6) - (9) subject to the boundary conditions 

(10) are discretized using the finite volume method [31]. The power law scheme is used for 

the convection and diffusion terms. The implicit scheme is used for time marching. The 

solution domain consist a finite number of grid points at which the discretization equations 

are applied. The region of interest is covered with m vertical and n horizontal uniformly 

spaced grid lines in X- and Y-directions. The overall Nusselt number is used to develop an 
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understanding of what grid fineness is necessary for accurate numerical simulations. The grid 

sizes are tested from 41×41 to 121×121 for Ra=106 and Pr=0.054.  It is observed from the 

grid independence test that a 81×81 uniform grid is enough to investigate the problem. At 

each time step the temperature and vorticity distributions are obtained from equations (9) and 

(6) respectively. The stream function distribution is obtained from equation (7) by using the 

Successive Over Relaxation (SOR) method and a known vorticity distribution. The boundary 

vorticity at solid walls can be obtained from the relation  

  22 1
2

8
(( ) )

2( )
w w

w O h
h

ζ + +Ψ − Ψ= + ∆
∆

,      (11) 

where the subscript w denotes the boundary node.  The velocities are then calculated using the 

stream function values. Finally, the numerical integration of the average Nusselt number is 

calculated by the Trapezoidal rule. The above process is repeated in the next time step until 

the steady state is reached. An iterative process is employed to find the stream function, 

vorticity and temperature fields. The process is repeated until the following convergence 

criterion satisfied for all variables (T, ζ, Ψ),  

  51
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i j i j

i j

ϕ ϕ
ϕ

−+

+
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Here i and j denote the grid points in X- and Y-directions respectively. The subscript n denotes 

the time step.  

  The validation of code is very important in computational studies. Therefore, the 

present computational code is verified against the existing results available in the literature. 

The quantitative results are compared with the corresponding solutions for natural convection 

in a square cavity [32, 33], natural convection in a cavity with partially active walls [3] and 

natural convection in the presence of the magnetic field [19]. They are shown in Tables 1, 2 

and 3. It is observed from the tables that an agreement is obtained between the present results 

and previous results. An in-house code is used to simulate the present problem. The 

computations are carried out by computer with Intel core 2 Duo CPU and 2GB RAM.   

 

4. Results and discussion 

 

  Numerical study is performed to understand the natural convection of an electrically 

conducting fluid in a rectangular enclosure with partially thermally active vertical walls in the 

presence of a uniform external magnetic field.  It is clear that the non-dimensional parameters 

of interest are the aspect ratio (Ar), Grashof number (Gr), the Prandtl number (Pr), the 

Hartmann number (Ha), and the direction of the external magnetic field (φ).  The value of the 

Prandtl number is chosen to be 0.054, corresponding to liquid metal in the present study. 

Computations are carried out for nine different thermally active locations with the Grashof 

numbers ranging from 103 to 106, the Hartmann numbers ranging from 10 to 100 and the 

aspect ratio from Ar=0.5 to 4. The direction of the external magnetic field with the horizontal 

axis is varying from φ=0° to 90°.  
   The flow pattern of the Middle-Middle heating location for Ha=10, 25 and 100, φ=0°, 
45°, 90° and Gr=105 is shown in Figures 2(a-i). At φ=0° and Ha=10, the flow consists a 

single cell rotates clockwise direction and occupies the whole cavity, Fig. 2(a). When 
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increasing the angle to φ=45° or 90° there is no considerable change in the flow pattern for 

weak magnetic field. It is interesting to note that the cell elongated horizontally when 

increasing the Hartmann number to 25. When changing the angle of external magnetic field, 

there exists a small change in flow pattern for moderate magnetic field. Further increasing the 

Hartmann number to Ha=100, the flow pattern is affected very much by the orientation of the 

magnetic field. When φ=0° the flow has a vertical unicellular pattern, Fig. 2(g). The eddy is 

skewed elliptically towards the right-bottom and the left-top corners when φ=45°, Fig. 2(h). 

From the Fig. 2(i), the central streamlines are elongated horizontally and two secondary cells 

appear inside it as φ increases (φ=90°). The influence of a magnetic field on flow pattern is 

apparent from these figures. This is due to the retarding effect of the Lorentz force.  

  The isotherms of the Middle-Middle heating location for Ha=10, 25, 100, φ=0°, 45°, 
90° and Gr=105 are shown in fig. 3(a-i). For weak magnetic field strength (Ha=10), there is a 

temperature stratification in the vertical direction and the thermal boundary layer is formed 

along the heating locations, which is clearly seen from the Fig. 3(a-c). It can be seen from 

these figures that convection is a dominant heat transfer mechanism.  Increasing the Hartmann 

number to 25, there is a small noticeable change found in temperature field. Further 

increasing the Hartmann number (Ha=100), the vertical temperature stratification inside the 

cavity disappears and the thickness of the thermal boundary layers along the thermally active 

locations is reduced. This shows that convection is suppressed for all values of φ due to the 

strong magnetic field effect and hence the heat transfer in the cavity is mostly by conduction.  

  The streamlines for the Top-Bottom thermally active location with different 

directions of external magnetic filed, Ha=25 and Gr=105 are displayed in Fig. 4(a-c). The 

flow consists of a single cell with two inner cells and the centers of the inner cells are located 

near the thermally active parts of side walls as seen in Fig. 4 for  all φ=0°, 45°, 90°. The 

position of the inner cells is changed by increasing the value of φ. The formation of such flow 

pattern reduces the heat transfer rate. The corresponding isotherms are plotted in Fig. 4(d-f). 

Figures 5(a-f) show the streamlines and isotherms for the Bottom-Top thermally active 

location with different directions of the external magnetic field, Ha=25 and Gr=105. The 

isotherms are crowded near the active locations on the right-bottom and the left-top corner of 

the cavity and form the thermal boundary layer.  It is observed from this configuration that 

convection is dominated heat transfer mode. The streamlines and isotherms show almost 

similar pattern as like in Figs. 2-5. That is, there is no noticeable change on flow filed when 

changing the cooling location for a fixed heating location. However, a small change is 

observed in the temperature distribution near the thermally active location when changing the 

cooling location for a fixed heating location.  

  Figure 6 shows the mid-height velocity profiles for different thermally active 

locations, Hartmann numbers, φ=0° and Gr=105. The velocity of the particle is decreased with 

increasing the Hartmann number. The strong magnetic field decreases the flow speed inside 

the enclosure. The velocity of the fluid is higher in the Bottom-Top location whereas the 

velocity of the fluid is low in the Top-Bottom location. The local Nusselt number for different 

directions of the external magnetic field, Hartmann numbers and three active locations are 

depicted in Fig. 7(a-c). When changing the direction of the external magnetic field, a small 

variation in local Nusselt number is observed. Comparing these figures, it is observed that the 
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Middle-Middle location provides the higher local heat transfer rate. The value of local Nusselt 

number decreases along with the heater. The local Nusselt number slightly increases at the 

end of the heater when heat is at middle or bottom of the wall. Further scrutinizing these 

figures, local Nusselt number is reduced in the presence of magnetic field.  

  An important quantity of practical interest in the heat transfer analysis is the average 

heat transfer rate dissipated from the heating location and is measured from the dimensionless 

parameter average Nusselt number. In order to find the effect of thermally active location on 

magneto convection, the average Nusselt number is plotted for different heating and cooling 

locations along the vertical walls of the cavity in Fig. 8. It reveals clearly the effect of 

different thermally active locations on average heat transfer rate. It is observed that the heat 

transfer rate is enhanced in the Bottom-Top thermally active location and the heat transfer rate 

is poor in the Top-Bottom location. This is due to the buoyancy effect acts more effectively in 

the Bottom-Top location than that in the Top-Bottom location where the buoyancy is 

suppressed by horizontal wall in the Top-Bottom location.  

  In order to study the effect of the direction and strength of the external magnetic field 

on natural convection, the average Nusselt number is plotted as a function of the Hartmann 

and Grashof numbers for different values of φ in Figs. 9-11. It can be seen from the figure that 

there is a small change in the average heat transfer rate when changing the direction of 

external magnetic field. Among these three directions, φ=90° produces higher heat transfer 

rate for most thermally active locations. It is observed that the heat transfer rate decreases 

with increase in the Hartmann number for all directions of the external magnetic field and 

thermally active locations. It is observed that increasing the Grashof number increases the 

heat transfer rate. Fig. 12(a-c) show the effect of the aspect ratio against the average Nusselt 

number for different thermally active locations, different magnetic field strengths and 

directions and Gr=105. It is observed from the figures that the average Nusselt number 

increases with aspect ratio.  It is also found that the rate of heat transfer is suppressed for high 

values of the Hartmann number. 

 

5. Conclusions 

 

  The effect of orientation of the external magnetic field and partially thermally active 

zones on natural convection in an enclosure is studied numerically. The following are 

concluded from the study.  

o The thermally active locations make great impact on convective flow and heat transfer. 

The Bottom-Top thermally active location gives higher heat transfer rate whereas the 

Top-Bottom location gives very poor heat transfer rate.  

o Convective heat transfer is enhanced when heating location is either at the middle or 

bottom of the left wall while the cooling location is either at the top or middle of the right 

wall.  

o The heat transfer rate decreases on increasing the strength of the magnetic field.  

o The heat transfer rate increases on increasing the Grashof number and aspect ratio.  

o The flow field is altered by changing the direction of external magnetic field in the 

presence of the strong magnetic field. 
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Nomenclature 

 

Ar  Aspect ratio [-]  

B   magnetic field [T] 

Bo  magnitude of the  magnetic field [-]  

F electromagnetic force [Nm3] 

g acceleration due to gravity [ms-2]  

Gr Grashof number  [-]    

H height of the enclosure [m] 

Ha Hartmann number [-]   

J electric current [A] 

L length of the enclosure [m] 

Nu local Nesselt number ( /T Y= −∂ ∂ ), [-]  

Nu  average Nusselt number [-]  

P pressure [Pa] 

Pr Prandtl number [-] 

t dimensional time [s]  

T dimensionless temperature ( )/()( chc θθθθ −−= ), [-] 

u, v  velocity components [ms-1] 

U, V dimensionless velocity components (=(u,v)L/ν), [-] 

x, y dimensional coordinates  [m] 

X, Y dimensionless coordinates (=(x,y)/L), [-] 

Greek Symbols  

α  thermal diffusivity [m2s-1] 

β coefficient of thermal expansion [K-1] 

ζ dimensionless vorticity (=ωL2/ν), [-] 

θ temperature [K] 

µ dynamic viscosity [Nsm-2] 

ν kinematic viscosity [m2s-1] 

ρ density [kgm-3] 

σe  electrical conductivity of the medium [S] 

τ dimensionless time (=tν/L2), [-] 

φ direction of the external magnetic field [rad] 

ψ  stream function [m2s-1] 

Ψ dimensionless stream function (=ψ/ν), [-] 

ω  vorticity [s-1] 

Subscripts 

c  cold wall 

h hot wall  

0  reference state 

w  conditions at wall/boundary 
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Table 1.  Comparison of average Nusselt number with previous works for square cavity 

with fully heated vertical walls 

Pr 0.1 0.71 1.0 

Ra 104 105 103 104 105 106 104 105 

Davis [32] - - 1.116 2.234 4.510 8.869 - - 

Emery & Lee [33] 2.011 3.794 - - - - 2.226 4.500 

Present 2.126 3.972 1.110 2.236 4.496 8.658 2.247 4.572 

 

 

 

Table 2.  Comparison of average Nusselt number with previous works for square cavity 

with partially heated walls 

Ra 104 105 106 

Model TB MM BT TB MM BT TB MM BT 

Valencia & 

Frederick [3] 
2.142 3.399 2.997 3.295 6.383 5.713 4.505 12.028 11.659 

Present 2.089 3.318 2.888 3.136 6.198 5.643 4.397 11.532 10.982 

TB → Top-Bottom; MM → Middle-Middle; BT → Bottom-Top 

 

 

 

Table 3.  Comparison of average Nusselt number with previous works for magnetic 

convection in a square cavity with Gr=2××××105   

Ha 0 10 50 100 

Rudraiah et al. [19] 4.9198 4.8053 2.8442 1.4317 

Present 5.0025 4.8148 2.8331 1.4341 
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Figure 1 Physical configuration and boundary conditions 
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Figure 2 Streamlines of Middle-Middle location for different φφφφ, different Ha and Gr=105. 
 
 

Ha = 10 

Ha = 25 

Ha = 100 



15 
 

 
φ = 0o   φ = 45 o      φ = 90 o 

 0
.1

4
 0

. 2
9

 0
.4

3
 0

.5
7

 0
.7

1
 0

.8
6

   

 0
.1

4
 0

.2
9

 0
.4

3 0.
57

 0.71

 0
. 8

6

   

 0
.1

4
 0

.2
9 0
.4

3 0.57

 0.71

 0
. 8

6

 
(a)    (b)    (c) 

 0
.1

4
 0

.2
9

 0
.4

3

 0.57

 0
.7

1 0
.8

6

   

 0
.1

4
 0

.2
9 0

.4
3

 0.57

 0
.7

1
 0

.8
6

   

 0
. 1

4
 0

.2
9

 0
.4

3

 0.57

 0
.7

1
 0

.8
6

 
(d)    (e)    (f) 

 0
. 1

4 0
.2

9

 0
.4

3

 0
.5

7

 0
.7

1

 0
.8

6

   

 0
.1

4

 0
.2

9

 0
.4

3

 0
.57

 0
.7

1

 0
.8

6

   
 0

.1
4 0

.2
9

 0
.4

3

 0
.5

7

 0
.7

1

 0
.8

6

 
(g)    (h)    (i) 

Figure 3 Isotherms of Middle-Middle location for different φφφφ, different Ha and Gr = 105. 
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(d)    (e)    (f) 

Figure 4 Streamlines and isotherms of Top-Bottom location for different φφφφ, Ha = 25 and 
Gr = 105. 
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(d)    (e)    (f) 

Figure 5 Streamlines and isotherms of Bottom-Top location for different φφφφ, Ha = 25 and 
Gr = 105. 
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Figure 6 Mid-height velocity profiles for different Hartmann number 
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Figure 7 Local Nusselt number for different φφφφ and Hartmann number  
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Figure 9 Average Nusselt number versus Hartmann number for different φφφφ  
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Figure 10 Average Nusselt number versus φφφφ for different Hartmann numbers  
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(b) Middle–Middle location 
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Figure 11 Average Nusselt number versus Grashof numbers for different φφφφ and Ha. 
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(a) Top–Bottom location 
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(b) Middle-Middle location 
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Figure 12 Average Nusselt number versus aspect ratio for different φφφφ and Ha   


