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An analysis is carried out to study the effect of heat and mass transfer on a non-
Newtonian fluid between two infinite parallel walls, one of them moving with a 
uniform velocity under the action of a transverse magnetic field. The moving wall 
moves with constant velocity in the direction of fluid flow while the free stream 
velocity is assumed to follow the exponentially increasing small perturbation law. 
Time-dependent wall suction is assumed to occur at permeable surface. The go-
verning equations for the flow are transformed in a system of non-linear ordinary 
differential equations by perturbation technique and are solved numerically by 
using the shooting technique with fourth order Runge-Kutta integration scheme. 
The effect of non-Newtonian parameter, magnetic pressure parameter, Schmidt 
number, Grashof number, and modified Grashof number on velocity, tempera-
ture, concentration, and the induced magnetic field are discussed. Numerical re-
sults are given and illustrated graphically for the  considered problem. 
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Introduction  

The Couette-type flow with  heat and mass transfer problems have many practical 

applications in technological industrial manufacturing process, the steady and unsteady  

Couette flow in hydrodynamics and hydromagnetics that are subject to wall suction have been 

discussed by several authors [1-5]. Katagiri [6] studied the Couette-flow formation in magne-

tohydrodynamics (MHD). Neglecting the induced field, he solved the momentum equation by 

the method of Laplace transformation. Eldabe et. al. [7] examined the non-Newtonian flow 

formation in Coutte motion in MHD with time-varying suction. Muhuri [8] considered the 

more general case wherein the velocity of the moving wall varies as (time)
n
 and where the 

walls are subjected to uniform suction or injection. 

Flow with heat and mass transfer problems over a continuous moving flat surface 

have many practical applications in technological and industrial manufacturing processes. 

*nAuthor’s e-mail:  faizasalama@hotmail.com 
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Eldabe [9] studied the unsteady free convection flow of an incompressible, electrically 

conducting, viscous liquid through a porous medium past a hot, vertical porous plate in the 

presence of transverse magnetic field. Char [10] investigates the more complicated problem 

which involves both heat and mass transfer in the hydromagnetic flow of a viscoelastic fluid 

over a stretching sheet. Also, Elbashbeshy [11] studied heat and mass transfer along a vertical 

plate in presence of a magnetic field. Some researches have been carried out to include 

various physical aspects of the problem of combined heat and mass transfer. Chamkha et al. 
[12] investigated the problem of coupled heat and mass transfer by MHD free convection 

from an inclined plate in the presence of internal heat generation or absorption. Eldabe et al. 
[13] studied the unsteady flow of an electrically conducting fluid with MHD convection heat 

and mass transfer over an infinite solid surface. Eldabe et al. [14] also studied the mixed 

convective heat and mass transfer in non-Newtonian fluid at a peristaltic surface with 

temperature-dependent viscosity. The unsteady MHD convection heat and mass transfer past 

a semi-infinite vertical permeable moving plate with heat absorption was studied in [15]. 

Seddeek et al. [16] studied the effects of variable viscosity and thermal conductivity on an 2-

D laminar flow of viscous incompressible conducting fluid past a semi-infinite vertical porous 

moving plate, taking into account, the effect of magnetic field. Salem [17] investigated the 

simultaneous effects of coupled heat and mass transfer in Darcy-Forchheimer mixed 

convection from a vertical flat plat embedded in a fluid-saturated porous medium under the 

effects of radiation and viscous dissipation. Recently, Anwer et al. [18] considered unsteady 

MHD Hartmann-Couette flow and heat transfer in a Darcian channel with hall current, ion 

slip, viscous and Joule heating effects. 

This paper treats numerically the flow of an elastic-viscous, incompressible, and 

electrically conducting fluid between two infinite parallel walls one of them moving with a 

uniform velocity, taking into account the effects of heat and mass transfer. The system is 

stressed by a magnetic field of constant strength acting perpendicular to the walls. 

Mathematical formulation 

Let us consider an unsteady, incompressible, viscoelastic fluid flowing between two 

infinite parallel walls at distance d apart and subject to a uniform magnetic field H0 normal to 

the walls in the presence of thermal and concentration buoyancy effect. A constant magnetic 

field produces an induced magnetic field h and induced electric field E . The lower wall 

moves with uniform velocity U while the other is at rest. The fluid is assumed to be elastico-

viscous formulation by Walters [19] and electrically conducting whereas the walls are taken 

to be non-conducting. The temperature and the species concentration at the lower wall are To 

and Co and at the upper wall T1 and C1, respectively. The x-axis is taken along the lower wall 

and the y-axis is taken to be normal to the wall.  

The electro-magnetic quantities satisfy Maxwell’s equations when the displacement 

currents and free charges are neglected [20]: 
 

 H 0  (1) 
 

 H J  (2) 
 

 
e

H
E

t
 (3) 

 
 E 0  (4) 
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where J  is the electric current density, and me – the magnetic permeability. 

These equations are supplemented by Ohm's law: 
 

eJ (E V H)  

where s is the electric conductivity. 

As mentioned above the applied field H  has component (0, H0, 0). It can easily be 

seen from the above equations that the induced magnetic field h  has component  (h, 0, 0). 

The vectors E  and J  will have non-vanishing components only in the z-direction, i. e.: 
 

 
e 0E(0,0, ) and J  (0,0, ), where [ ( )]E J J E H u hv  (5) 

 
The vector eqs. (2) and (3) reduced to the following scalar equations: 

 
 H

J
y

 (6) 

 

 
Eliminating J between (5) and (6), we obtain: 

 

 
Eliminating E between eqs. (7) and (8), we obtain: 

 
where h = (mes)

–1
 is the magnetic diffusivity. 

The continuity and momentum equations governing the flow of MHD incompressi-

ble non-Newtonian fluid are: 

 

 
where τ  is defined by [19], r, g, bT, and bC denote, respectively, the density, gravitational 

acceleration, the thermal and expansion coefficient and the concentration expansion 

coefficient.  

The governing equations for energy and mass concentration are: 
 

 

 
e

E H

y t
 (7) 

 
e[ ( )]

H
E Hu vh

y
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where T is the temperature of the fluid, a – the thermal diffusivity of the fluid medium, C – 

the mass concentration, and D – the diffusion coefficient. 

Under the usual boundary layer approximation, the governing equations for this 

problem can be written as: 

 

 

 

 

 
Subject to the boundary conditions 

 

 
where u, v, and t are the components of dimensional velocities along x and y-directions and 

dimensional time, respectively. m is the viscosity of the fluid and ko – the elastic constant. 

The continuity equation gives: 

 
which is the velocity of suction that consists of a basic steady value U with a weak time-va-

rying component. Let us introduce the non-dimensional quantities as: 
 

 

 
In view of eqs. (21) and (22), the governing eqs. (15)-(18) reduce to the following 

non-dimensional form after dropping the suffix 1:  
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y
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  Y = 0    u = U,   h = 0,   T = To,   C = Co (19) 

 
Y = d    u = 0,   h = 0,   T = T1,   C = C1 (20) 
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where k = koU

2
/rv

2
 is the visco-elastic parameter, Gr = [gbT(T1 – T0)/U

3
]v – the Grashof 

number, Gc = [gbC(C1 – C0)/U
3
]v – the modified Grashof number, M = (me

2
0H /rU

2
)

1/2 
– the 

magnetic-pressure number , Pr = v/a – the Prandtl number, Sc = v/D – the Schmidt number 

and, Rm = v/h – the magnetic Reynolds number. 

The boundary conditions (19) and (20) are given in the following dimensionless 

form:  

 

 
In order to reduce the above system of partial differential equations to a system of 

ordinary differential equations in dimensionless form, we may represent the velocity, 

temperature, concentration and induced magnetic field as  

 
Substituting in eqs. (23)-(26) and comparing the harmonic and non-harmonic terms, 

neglecting terms of O(e)
2
, we get the following equations:  
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Here primes denote differentiation with respect to y. The corresponding boundary 

conditions can be written as: 

Results and discussion  

In order to get an insight in the physical situation of the problem, the system of 

ordinary differential equations (30)-(37) along with the boundary conditions (38), are solved 

numerically by using the modified fourth-order Runge-Kutta method with shooting technique. 

The numerical computation have been carried out for various values of non-Newtonian 

parameter (k), magnetic pressure number (s), Grashof number (Gr), modified Grashof number 

(Gc), Prandtl number (Pr), and Schmidt number (Sc). Such a possible combination of values 

for the parameters k, s, Gr, Gc, Pr, and Sc are shown in figs. 1-10. The numerical calculations 

were performed by taking values of some constant parameters as Rm = 1, w = 1, and t = p. 

Figures 1 and 2 illustrate the influence of non-Newtonian parameter k on the 

velocity and the induced magnetic field distribution, respectively. As shown, the velocity and 
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Figure 1. Velocity distribution for various 
values of k; (a) s = 3 , (b) s = 5 , (c) s = 10 
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the induced magnetic field are decreasing 

with increasing the non-Newtonian parame-

ter k. This is because of the fact that the 

introduction of tensile stress due to visco-

elasticity causes transverse contraction of the 

boundary layer. With fig. 1 it is interesting to 

note that the effect of k on the velocity is 

more pronounced at higher values of the 

magnetic pressure number s. Also, fig. 2 

demonstrates that the peak of the profiles 

decreases near the stationary plate with 

increasing k. 
Figures 3 and 4 represent the effect of the magnetic-pressure number s on the 

velocity and the induced magnetic field profiles, respectively. From fig. 3. it is shown that the 

velocity distribution decreases near the stationary plate with increase in s, whereas it increases 

near the moving plate with the increase in s. this effect is more pronounced near the stationary 

plate. From fig. 4 we notice that the induced magnetic field has parabolic profiles and the 

peak of the profiles indicates the minimum at the central region. We also note that the effect 

of magnetic-pressure is to increase the induced magnetic field profiles. 

 

 
Figure 3. Velocity distribution for various  

values of s 

 
Figure 4. Induced magnetic field distribution for 

various values of s 

 

Figures 5 and 7 show the effect of Grashof 

number Gr and modified Grashof number Gc 

on the velocity distribution. Physically Gr > 0 

means heating of the fluid or cooling of the 

boundary surface, Gr < 0 means cooling of the 

fluid or heating of the boundary surface and Gr = 

= 0 corresponding to the absence of free 

convection current. As shown, the velocity 

distribution increase with increase of Gr or Gc. 

Increase of Gr means increase of temperature 

gradients T1 – T0, which leads to the increase 

of velocity distribution but increase of Gc 

means the drag forces created by the solid matrix increases and as a result the velocity 

increases. From figs. 6 and 8 we observe that the induced magnetic field profile increases near 

 

Figure 2. Induced magnetic field distribution 

for various values of k 

 

Figure 5. Velocity distribution for various 
values of Gr 
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the stationary plate with increase in Gr or Gc, whereas it decreases near the moving plate with 

the increase in Gr or Gc. 

 

 
Figure 6. Induced magnetic field distribution for 
various values of Gr 
 

 
Figure 7. Velocity distribution for various  

values of Gc 
 

 

Figures 9 and 10 give the effect of 

Prandtl number Pr on the velocity and 

temperature distributions, respectively. It is 

seen, as expected that the velocity and tem-

perature distributions decrease with increas-

ing the parameter Pr. This is due to the fact 

that there would be decrease of thermal 

boundary layer thickness with the increasing 

values of Pr.  

Figures 11-12 display the effects of the 

Schmidt number Sc on the velocity and 

concentration profiles, respectively. We 

notice that the effect of increasing values of 

Sc is to decrease the concentration profile in the flow field. Physically, the increase of Sc 

means decrease of molecular diffusivity D. That results in decrease of concentration boundary 

layer. Hence, the concentration of species is higher for small values of Sc and lower for larger 

values of Sc. Also, increases in Sc cause reduction in the fluid velocity. These behaviors are 

clearly shown in figs. 11 and 12. 

 

 
Figure 9. Velocity distribution for various  
values of Pr 

 

Figure 10. Temperature distribution for 
various values of Pr 

 
Figure 8. Induced magnetic field distribution for 
various values of Pr 
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Figure 11. Velocity distribution for various values 

of Sc 
 

 
Figure 12. Concentration distribution for 
various values of Sc 
 

Conclusion 

Theoretical analysis has been carried out for momentum, heat and mass transfer 

characteristics of an incompressible flow of electrically conducting non-Newtonian fluid 

between two infinite parallel walls under the action of a transfer magnetic field taking into 

account the induced magnetic field. The method of solution can be applied for small 

perturbation approximation. Numerical results are presented to illustrate the details of the 

flow and heat and mass transfer characteristics and their dependence on the physical 

parameters. It was found that the effect of the viscoelasticity of the fluid is to decreases both 

the flow and induced magnetic field. Also, it was found that when the Grashof number 

increased, the concentration buoyancy effects were enhanced and thus, the fluid velocity 

increased. However, the presence of Prandtl number effects caused reduction in the fluid 

tempetrature which resulted in decrease in the fluid velocity. Also, when the Schmidt number 

was increased, the concentration level was decreased resulting in a decreased fluid velocity. 

On the other hand, it was found that the induced magnetic field profiles decreased as either 

the Grashof number or the modified Grashof number increased near the stationary plate, while 

reverse behaviour is observed near the moving plate. In addition, An increase in the value of 

Schmidt number resulted in decreases in both velocity and concentration. 

Nomenclature 

C  –  concentration, [kmolm–3] 
D  –  mass diffusivity, [m2s–1] 

E  –  electric field vector 
Gc  –  modified Grashof number, [–] 
Gr  –  Grashof number, [–] 
g  –  gravitational acceleratin, [ms–2] 

H  –  magnetic induction vector 

0H  –  applied magnetic field 
J  –  current density vector 
k  –  visco-elastic parameter 

0k  –  elastic parameter 
M  –  magnetic field parameter 
Pr  –  Prandtl number, [–] 

mR  –  magnetic Reynolds number, [–] 
T  –  temperature of the fluid, [K] 

 

T0 –  surface temperature, [K] 
t –  time, [s] 
U –  surface velocity, [ms–1] 
u, v –  velocity components along x- and  
 –  y-axes, respectively, [ms–1] 
x, y –  Cartesian co-ordinates along x- and  
 –  y-axes, respectively, [m] 

Greek symbols 

a –  fluid thermal diffusivity, [m2s–1] 
bc –  concentration expansion coefficient,  
 –  [m3kmol–1] 
bT –  temperature expansion coefficient, [K–1] 
G –  dimensionless concentration 
e –  scalar constant (<1) 
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m –  dynamic viscosity of the fluid, [Nsm–2] 
n –  kinematic viscosity, [m2s–1] 
r –  density of the fluid, [kgm–3] 

s –  electrical conductivity, [sm–1] 
q –  dimensionless temperataure 
t –  shearing stress, [Nm–2] 


