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Effect of Hall currents and suspended particles is considered on the hydromag-
netic stability of a compressible, electrically conducting Walters’ (Model B ) 
elastico-viscous fluid. After linearizing the relevant hydromagnetic equations, the 
perturbation equations are analyzed in terms of normal modes. A dispersion rela-
tion governing the effects of visco-elasticity, magnetic field, Hall currents and 
suspended particles is derived. It has been found that for stationary convection, 
the Walters’ (Model B ) fluid behaves like an ordinary Newtonian fluid due to the 
vanishing of the visco-elastic parameter. The compressibility and magnetic field 
have a stabilizing effect on the system, as such their effect is to postpone the onset 
of thermal instability whereas Hall currents and suspended particles are found to 
hasten the onset of thermal instability for permissible range of values of various 
parameters. Also, the dispersion relation is analyzed numerically and the results 
shown graphically. The critical Rayleigh numbers and the wavenumbers of the 
associated disturbances for the onset of instability as stationary convection are 
obtained and the behavior of various parameters on critical thermal Rayleigh 
numbers has been depicted graphically. The visco-elasticity, suspended particles 
and Hall currents (hence magnetic fieldintroduce oscillatory modes in the system 
which were non-existent in their absence.  
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        thermal instability, compressibility 

Introduction 

A detailed account of the theoretical and experimental results of the onset of thermal 

instability (Bénard convection) in a fluid layer under varying assumptions of hydrodynamics 

and hydromagnetics is given by Chandrasekhar [1] in his celebrated monograph. Chandra [2] 

observed a contradiction between the theory and experiment for the onset of convection in 

fluids heated from below. He performed the experiment in an air layer and found that the 

instability depended on the depth of the layer. A Bénard-type cellular convection with the 

fluid descending at a cell centre was observed when the predicted gradients were imposed for 
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layers deeper than 10 mm. A convection which was different in character from that in deeper 

layers occurred at much lower gradients than predicted if the layer depth was less than 7 mm, 

and called this motion, “Columnar instability”. Chandra [2] added an aerosol to mark the flow 

pattern. Scanlon et al. [3] investigated some of the continuum effects of particles on Bénard 

convection and found that a critical Rayleigh number was reduced solely because the heat 

capacity of the pure gas was supplemented by that of the particles. The effect of suspended 

particles was thus found to destabilize the layer. Palaniswamy et al. [4] have considered the 

stability of shear flow of stratified fluids with fine dust and have found that the effect of fine 

dust is to increase the region of instability. Sharma et al. [5] considered the effect of 

suspended particles on the onset of Bénard convection in hydromagnetics while Sharma et al. 
[6] investigated the effect of Hall currents and suspended particles on thermal instability of 

compressible fluids saturating a porous medium. 

If an electric field is applied at right angles to the magnetic field, the whole current 

will not flow along the electric field. This tendency of the electric current to flow across an 

electric field in the presence of magnetic field is called Hall effect. The Hall current is likely 

to be important in flows of laboratory plasmas as well as in many geophysical and 

astrophysical situations. Sherman et al. [7] have considered the effect of Hall currents on the 

efficiency of a magnetohydrodynamics (MHD) generator while Gupta [8] studied the effect of 

Hall currents on the thermal instability of electrically conducting fluid in the presence of 

uniform vertical magnetic field. Sharma et al. [9] investigated the effect of Hall currents and 

finite Larmor radius on thermosolutal instability of a rotating plasma and established the 

destabilizing influence of Hall currents. For compressible fluids, the equations governing the 

system become quite complicated. Spiegel et al. [10] have simplified the set of equations 

governing the flow of compressible fluids assuming that the depth of the fluid layer is much 

smaller than the scale height as defined by them and the motions of infinitesimal amplitude 

are considered. Sharma [11] investigated the thermal instability of compressible fluids in the 

presence of rotation and magnetic field while Sharma et al. [12] studied the effect of finite 

Larmor radius on thermal instability of compressible rotating plasma. Thermal instability of 

compressible, finite Larmor radius Hall plasma has been studied by Sharma et al. [13] in a 

porous medium. 
There is growing importance of non-Newtonian fluids in geophysical fluid 

dynamics, chemical technology, and petroleum industry. Bhatia et al. [14] studied the 

problem of thermal instability of a Maxwellian visco-elastic fluid in the presence of rotation 

and found that rotation has a destabilizing influence in contrast to its stabilizing effect on a 

viscous Newtonian fluid. But Maxwell’s model does not describe all the characteristics of a 

visco-elastic fluid. Thermal instability of an Oldroydian visco-elastic fluid acted on by a 

uniform rotation has been studied by Sharma [15]. An experimental demonstration by Toms 

et al. [16] has revealed that a dilute solution of methyl methacrylate in n-butyl acetate agrees 

well with the theoretical model of Oldroyd [17]. There are many visco-elastic fluids which 

cannot be characterized by Maxwell’s constitutive relations or Oldroyd’s [17] constitutive 

relations. Two such classes of elastico-viscous fluids are Rivlin-Ericksen [18] and Walters’ 

(Model B ) fluids. Walters [19] has proposed a theoretical model for such elastico-viscous 

fluids and reported [20] that the mixture of polymethyl methacrylate and pyridine at  25 °C 

containing 30.5 g of polymer per liter behaves very nearly as the Walters’ (Model B ) 

elastico-viscous fluid. Such and other polymers are used in agriculture, communication 

appliances and in biomedical applications. Sharma et al. [21] have studied the stability of two 

superposed Walters’ (Model B ) liquids whereas thermosolutal convection problem in the 
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presence of magnetic field for Walters’ (Model B ) fluid has been investigated by Sunil et al. 

[22]. Recently, Sharma et al. [23] considered the stability of stratified Walters’ (Model B ) 

fluid in the presence of magnetic field and rotation in porous medium.  

Motivated by the fact that knowledge regarding fluid particle mixture is not 

commensurate with their industrial and scientific importance and the importance of flow of 

visco-elastic fluids in paper industry, petroleum industry, chemical technology, and 

geophysical fluid dynamics; we set out to study the effect of suspended particles and Hall 

currents on thermal instability of a compressible Walters’ (Model B ) fluid. Here, it is 

worthwhile to mention that Hall currents are important in many geophysical and astrophysical 

situations in addition to the flow of laboratory plasmas. To the best of our knowledge, the 

problem has not been investigated so far. 

Formulation of the problem 

Here, as shown in fig. 1, we have 

considered an infinite, horizontal, 

compressible electrically conducting 

Walters’ (model B ) fluid layer of 

thickness d,  permeated with sus-

pended particles, which is heated 

from below (at z = 0) so that tempera-

ture at the bottom layer and at the 

upper layer are T0 and Td, respec-

tively. A uniform temperature gra-

dient b(= dT/dz) is maintained and the 

layer is acted upon by the gravity 

force g (0,0, )g and uniform ver-

tical magnetic field H  = (0, 0, H). 

The equations of motion and 

continuity for Walters’ (model B ) visco-elastic fluid in the presence of suspended particles 

and Hall currents are: 
 

 2 e
1

v
(v )v g ' v ( H) H (v v)

4
dp K N

t t
+  (1) 

 
 

 (2) 

 
where r, m, m , p, and v (u,v,w) denote, respectively, the density, viscosity, viscoelasticity, 

pressure, and velocity of the pure fluid, vd (l, r, s), and N (x, )t  denote the velocity and 

number density of the suspended particles, me is the magnetic permeability, x  = (x, y, z) and 

K1 = 6pmh , h  being the particle radius, is the Stokes’ drag coefficient. Assuming uniform 

particle size, spherical shape and small relative velocities between the fluid and particles, the 

presence of particles adds an extra force term, in the equations of motion (1), proportional to 

the velocity difference between particles and fluid. 

Since the force exerted by the fluid on the particles is equal and opposite to that 

exerted by the particles on the fluid, there must be an extra force term, equal in magnitude but 

opposite in sign, in the equations of motion for the particles. Interparticle reactions are 

 
Figure 1. Geometrical configuration 
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ignored because the distances between the particles are assumed to be quite large compared 

with their diameter. The effects due to pressure, gravity and magnetic field on the particles are 

small and so ignored. If mN is the mass of the particles per unit volume, then the equations of 

motion and continuity for the particles are: 
 

 
1

v
(v . )v (v v )d

d d dmN = K N
t

 (3) 

 
Let Cf , Cpt , T, and q denote, respectively, the heat capacity of the pure fluid, the 

heat capacity of the particles, the temperature, and the “effective thermal conductivity” of the 

pure fluid. Assuming that the particles and the fluid are in thermal equilibrium, the equation 

of heat conduction gives: 

 2
f ptv vdC T mNC T q T

t t
 (5) 

 
The Maxwell’s equations in the presence of Hall currents yield: 

 
 

 (6) 

 
 H 0  (7) 

 
where η, N', and e denote, respectively, the resistivity, the electron number density, and the 

charge of an electron. The state variables pressure, density and temperature are expressed in 

the form [10]:  

 
m 0( , , , ) ( ) ( , , , )f x y z t f f z f x y z t  (8) 

 
where fm stands for constant space distribution of f,  f0 is the variation in the absence of motion 

and f  (x,y,z,t) is the fluctuation resulting from motion. The basic state of the system with a 

uniform particle distribution is given by: 

p = p(z),  r = r(z),  T = T(z),  v =(0, 0, 0),  H  = (0, 0, H),  vd = (0, 0, 0), and  

N = N0 = constant 

 
where following Spiegel et al. [10], we have: 
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where pm and rm stand for a constant space distribution of p and r while r0 and T0 stand for 

density and temperature of the fluid at the lower boundary. Following the assumptions given 

by Spiegel et al. [10] and results for compressible fluids, the flow equations are found to be 

the same as those of incompressible fluids except that the static temperature gradient b is 

replaced by its excess over the adiabatic (b – g/Cp), where Cp being specific heat of the fluid 

at constant pressure. 

Perturbation equations 

Let dp, dr, q, v (u, v, w), vd (l, r, s), h (hx, hy, hz), and N denote the perturbations in 

fluid pressure, density, temperature, fluid velocity, particle velocity, magnetic field H  and 

particle number density N0, respectively. Then the linearized hydromagnetic perturbation 

equations of the fluid-particle layer under Speigel et al. [10] assumptions are: 
 

 2 e 1 0

m m m m
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( ) g ' v ( h) H (v v)

4
d

K N
p

t t
+  (10) 

 
 

v 0  (11) 
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where am = 1/Tm = a, n = m/rm, n  = m /rm, k = q/rmCf, and g/Cp, n, n , and k stand for the 

adiabatic gradient, kinematic viscosity, kinematic viscoelasticity, and thermal diffusivity, 

respectively. Also, 

 0 pt

0 m f

andd d

mN CN
M h

N C
  

 
Eliminating dv  between eqs. (10)-(12), we obtain: 
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Equations (15) and (16) can be rewritten as: 
 

 2
z

4π

w H
h H

t z N e z
 (19) 

 
 2 2

z( )
4

H
H h

t z N e z
 (20) 

 
 2
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1
1 (1 )d d

m G m
h H w

K t t G K t
 (21) 

 
where z = n/ x is the z-component of vorticity, x = ( hy/ x) – ( hx/ y) is the z-component of 

current density and G = (Cp/g)b. 

Normal mode analysis method and dispersion relation 

Analyze the perturbation quantities in normal modes by seeking solutions in the 

form: 

 
where kx and ky are the wave numbers along x- and y-directions and the resultant wave 

number is given by 
2 2 1/2
x y( )k k k , n is the growth rate, and W, K, Z, X, and Q are the z-com-

ponents of fluid velocity w, magnetic field hz, vorticity z, current density x, and temperature q, 

respectively, after applying normal mode analysis. 

Using expression (22), eqs. (17)-(21), can be written as: 
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where we have non-dimensionalized various parameters: 
 

 
Let us consider the case of two free boundaries which are perfect conductors of heat. 

Though the case of two free boundaries is of little physical interest yet is mathematically very 

important as it enables us to get analytical solutions and draw some qualitative conclusions. 

For the case of free boundaries the boundary conditions are [1]: 
 

and hx, hy, hz are continuous. Since the components of magnetic field are continuous and the 

tangential components are zero outside the fluid, we have: 
 

 
Using these boundary conditions (28) and (29), we can see that all the even order 

derivatives of W must vanish for z = 0 and 1. Therefore the proper solution of W characteriz-

ing the lowest mode is: 

 
where W0 

is a constant. After eliminating Q, X, Z and K between eqs. (23)-(27), we obtain: 
 

where

 
 

 
Equation (31) is the required dispersion relation including the effects of Hall 

currents and compressibility on the thermal instability of Walters’ (Model B ) fluid permeated 
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with suspended particles. The dispersion relation reduces to the one derived by Sharma et al. 
[24] if the Hall current parameter is vanishing.  

Case of stationary convection 

Let us consider the case when instability sets in the form of stationary convection. 

For stationary convection, s = 0 and the dispersion relation (31) reduces to: 
 

 
which expresses the modified Rayleigh number R1 as a function of dimensionless wave 

number x and the parameters Q1, G, M, and Hd. Here, it is clear that for stationary convection 

the visco-elastic parameter F vanishes with s and the Walters’ (model B ) fluid behaves like 

an ordinary Newtonian fluid. In the absence of Hall currents, the above expression for 

Rayleigh number R1 reduces to: 

which is identical with the expression for R1 derived by Sharma et al. [24] wherein thermal 

instability of a compressible Walters’ (model B ) fluid in hydromagnetics is studied in the 

presence of suspended particles. 

Let the non-dimensional number G accounting for compressibility effect is kept as 

fixed, then we get: 

where Rc and cR  denote, respectively, the critical Rayleigh numbers in the absence and 

presence of compressibility. Thus, the effect of compressibility is to postpone the onset of 

thermal instability. The cases G < 1 and G = 1 correspond to negative and infinite value of 

Rayleigh number which are not relevant in the present study. Hence, compressibility has a 

stabilizing effect on the thermal convection. 

For investigating the effects of magnetic field, suspended particles and Hall currents, 

we examine the natures of dR1/dQ1, dR1/dHd,

 

and dR1/dM analytically.  

For analyzing the effect of magnetic field, expression (32) yields: 
 

which shows the usual stabilizing effect of magnetic field on thermal convection. This is in 

agreement with the result of  fig. 2, where  R1  is  plotted  against x for various values of Q1 = 

= 100, 150, 200, 250, and 300. This stabilizing effect of magnetic field is in good agreement 

with earlier works of Sharma et al. [25] and Kumar et al. [26]. 

For analyzing the effect of suspended particles; from the expression (32), we obtain 
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which states that suspended particles have a destabilizing effect  on the system. Also fig. 3 

confirms the above result numerically for the permissible range of values of various 

parameters. This result is in agreement with the result of Sharma et al. [6] in which effect of 

Hall currents and suspended particles is investigated on the thermal instability of 

compressible fluids in porous medium. The result is again identical with that of Kumar et al. 
[26] where the effect of suspended particles is studied on thermal instability of Walters’ 

(Model B') fluid in the presence of magnetic field saturating a porous medium. 

 

 

Expression for observing the effect of Hall currents is obtained as: 
 

 
which reflects the destabilizing influence of Hall currents on thermal instability of Walters’ 

(Model B') fluid. Also in fig. 4, R1 decreases with the increase in M which confirms the above 

result numerically. This result is identical with that of Sunil et al. [27] in which Hall effect on 

thermal instability of Walters’ fluid has been investigated. 

 

Let us now find out critical Rayleigh number Rc and the associated critical 

wavenumber xc for various values of the parameters Q1, M, and Hd. As a function of x, R1 

given by eq. (32) attains its extremal value when: 

 

 
Figure 2. Variation of Rayleigh number R1 with 
wavenumber x for fixed G = 10, Hd = 10, M = 10 

and various values of Q1 = 100, 150, 200, and 300 

 
Figure 3. Variation of Rayleigh number R1 with 

wavenumber x for fixed G = 10, Q1 = 100,  
M = 10 and for various values of Hd = 10, 20,  
and 30 
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Figure 4. Variation of Rayleigh number 

R1with wavenumber x for fixed G = 10, 

Q1 = 100, Hd = 10 and for various values 

of M = 10, 30, and 50 
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However, this equation is not very useful for determining the critical Rayleigh 

numbers for assigned values of G, Q1, M, and Hd. It is more convenient to evaluate Rc as a 

function of  x in accordance with eq. (32) for various values of Q1, Hd, and M as depicted in 

figs. 2-4 and locate the minimum numerically. The critical numbers listed in tab. 1 and 

illustrated in figs. 5-7 are obtained in this fashion. 

 
Table 1. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the 

onset of instability as stationary convection for various values of Q1, Hd, and M 

G = 10 Hd = 10 M = 10 G = 10 Q1 = 100 M = 10 G = 10 Q1 = 100 Hd = 10 

Q1 xc Rc Hd xc Rc M xc Rc 

100 

200 

300 

500 

1000 

3.5 

4.5 

5.0 

5.0 

5.0 

13.288 

26.032 

38.739 

64.755 

130.834 

10 

20 

30 

50 

3.5 

3.5 

3.5 

3.5 

13.288 

6.644 

4.429 

2.658 

10 

30 

50 

100 

3.5 

3.5 

3.0 

2.5 

13.288 

9.623 

7.809 

5.683 

 

Figure 5 shows that critical Rayleigh number Rc increases with the increase in 

magnetic field parameter Q1 depicting the usual stabilizing effect of magnetic field. 
 

 
Figure 5. Variation of critical Rayleigh number Rc 
with magnetic field parameter Q1 for fixed  
G = 10, Hd = 10, and M = 10 

 
Figure 6. Variation of critical Rayleigh number 

Rc with suspended particle factor Hd for fixed  
G = 10, Q1 = 100, and M = 10 

 

 

 
 

 
 
 

Figure 7. Variation of critical Rayleigh number 
Rc with Hall current parameter M for fixed  
G = 10, Q1 = 100, Hd = 10 

 

Figures 6 and 7 show the decrease in critical Rayleigh number Rc with the increase 
in suspended particles parameter Hd and Hall current parameter M, respectively. Thus figs. 6 
and 7 confirm the destabilizing influence of suspended particles and Hall currents, respec-
tively. 
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Stability of the system and oscillatory modes 

To determine the possibility of oscillatory modes we multiply eq. (23) by W*, the 
complex conjugate of W and using eqs. (24)-(27) together with the boundary conditions (28) 
and (29), we obtain: 
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where integrals I1, I2 … I9 are all positive definite. Putting s = sr + isi and equating real and 

imaginary parts of eq. (38), we get: 
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It follows from eq. (39) that sr may be positive or negative which means that the 

system may be stable or unstable. Also, from eq. (40) si may be zero or non-zero, meaning 

thereby that the modes may be non-oscillatory or oscillatory. The oscillatory modes are 

introduced due to the presence of visco-elasticity, magnetic field (hence Hall currents) and 

suspended particles. In the absence of magnetic field (hence Hall currents), suspended 

particles and viscoelasticity of the fluid; all the terms in eq. (40) are positive meaning thereby 

that si is zero. Therefore in the absence of these effects only non-oscillatory modes will 

prevail. i. e. the principle of exchange of stabilities will hold good. This result is in agreement 

with the result derived by Sunil et al. [27] where the effect of Hall currents has been 

investigated on Walters’ (Model B ) fluid and Sharma et al. [24] wherein effect of compres-

sibility and suspended particles is studied on thermal instability of Walters’ fluid in 

hydromagnetics. 

Conclusions 

In the present paper, the combined effect of Hall currents, magnetic field and 

suspended particles on the stability of a compressible Walters’ (Model B ) elastico-viscous 

fluid heated from below is considered. The effect of various parameters such as magnetic 

field, compressibility, Hall currents, and suspended particles has been investigated 

analytically as well as numerically. The main results from the analysis of the paper are: 

 for the case of stationary convection, Walters’ (Model B ) fluid behaves like an ordinary 

Newtonian fluid due to the vanishing of the visco-elastic parameter, 

 the expressions for dR1/dQ1, dR1/dHd, and dR1/dM are examined analytically and it has 
been found that the magnetic field has a stabilizing effect on the system whereas sus-
pended particles and Hall currents have a destabilizing influence on the system. Fig-
ures (2)-(4) support the analytic results graphically. The reasons for stabilizing effect 
of magnetic field and destabilizing effect of suspended particles and Hall currents are 
accounted by Chandrasekhar [1] and Scanlon et al. [3], respectively. These are valid 
for second-order fluids as well, 

 the effect of compressibility is to postpone the onset of instability, as is clear from eq. 

(33), 

 the critical thermal Rayleigh numbers and the associated wavenumbers are found for sta-

tionary convection for various parameters involved and it has been found that it increases 

with the increase in magnetic field parameter and decreases with the increase in sus-

pended particle factor and Hall current parameter thereby confirming the stabilizing role 

of magnetic field and destabilizing role of suspended particles and Hall currents, and 
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 the oscillatory modes are introduced due to the presence of visco-elasticity, Hall currents, 

and suspended particles. In the absence of these effects, the principle of exchange of sta-

bilities is found to hold good. 
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Nomenclature  

fC  –  heat capacity of the fluid, [Jkg–1K–1] 

pC  –  specific heat of the fluid at constant  
 –  pressure, [Jkg–1K–1] 

ptC  –  heat capacity of particles, [Jkg–1K–1]  
D  –  (= d/dz) 
d  –  depth of the fluid layer, [m] 
e  –  charge of an electron, [C] 
F  –  kinematic visco-elasticity, [–] 
g  –  acceleration due to gravity, (= 0, 0, –g), 
 –  [ms–2] 

H  –  magnetic field vector having components, 
 –  (= 0,0, H) [G] 

h  –  perturbation in magnetic field H (0,0, H), 
 –  (= hx, hy, hz), [G] 
i –  (= –11/2), a complex number 
K  –  z-component of magnetic field after  
 –  applying normal mode analysis 

1K  –  Stokes’ drag coefficient (= 6pmh ), [kgs–1] 
k  –  wave number of the disturbance, 
 –  

2 2 1/2( )x yk k , [m-1] 

x , yk k  –  wavenumbers in x and y directions, 
 –  respectively, [m–1] 
M  –  dimensionless Hall current parameter, [–] 
N  –  perturbation in suspended particle number  

 –  density, [m–3] 

0N  –  particle number density, [m–3] 
N  –  electron number density, [m–3] 
n  –  growth rate of the disturbance, [s–1] 

1Pr  –  thermal Prandtl number, [–] 

2Pr  –  magnetic Prandtl number, [–] 
p  –  fluid pressure, [Pa]  

1Q  –  Chandrasekhar number, [–] 
q  –  effective thermal conductivity of the pure  
 –  fluid, [Wm–1K–1] 

1R  –  Rayleigh number, [–] 
 

 

cR  –  critical Rayleigh number, [–] 

T  –  temperature, [K] 
v  –  fluid velocity vector having components 
 –  (u, v, w), [ms–1] 

vd  –  velocity of suspended particles (= l, r, s),  
 –  [ms–1] 
X –  z-component of current density after  
 –  applying normal mode analysis 
x, y, z –  x, y, z-directions 
x  –  wavenumber, [m–1] 

cx  –  critical wavenumber, [m–1] 
Z –  z-component of vorticity after applying  
 –  normal mode analysis 

Greek symbols 

 –  thermal coefficient of expansion, [K–1] 
 –  temperature gradient (= |dT/dz|), [Km–1] 
 –  curly operator, [–] 
 –  del operator, [-] 
 –  perturbation in the respective physical  

 –  quantity, [–] 
z –  z-component of vorticity 

 –  particle radius, [m] 
 –  resistivity, [m2s-1] 
 –  temperature after applying normal mode 

 –  analysis 
 –  perturbation in temperature, [K] 
 –  thermal diffusivity, [m2s-1] 
 –  viscosity of the fluid, [kgm-1s-1] 
 –  visco-elasticity of the fluid, [kgm–1s–1] 

e  –  magnetic permeability, [Hm-1] 
x –  z-component of current density 

 –  kinematic viscosity, [m2s-1] 
 –  kinematic visco-elasticity, [m2s–1] 
 –  density of the fluid, [kgm–3] 
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