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In this paper lattice Boltzmann method was employed for investigation the effect 
of the heater location on flow pattern, heat transfer and entropy generation in a 
cavity. A 2-D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to 
solve the thermal flow problem. The simulations were performed for Rayleigh 
numbers from 10

3
 to 10

6
 at Pr = 0.71. The study was carried out for heater length 

of 0.4 side wall length which is located at the right side wall. Results are pre-
sented in the form of streamlines, temperature contours, Nusselt number, and en-
tropy generation curves. Results show that the location of heater has a great ef-
fect on the flow pattern and temperature fields in the enclosure and subsequently 
on entropy generation. The dimensionless entropy generation decreases at high 
Rayleigh number for all heater positions. The ratio of averaged Nusselt number 
and dimensionless entropy generation for heater located on vertical and horizon-
tal walls was calculated. Results show that higher heat transfer was observed 
from the cold walls when the heater located on vertical wall. On the other hand, 
heat transfer increases from the heater surface when it is located on the horizon-
tal wall.  

Key words:  natural convection, cavity, entropy generation, lattice Boltzmann  
        method 

Introduction 

The phenomenon of natural convection in enclosures has received considerable 

attention due to its importance in many applications, such as solar collectors, electronic 

cooling devices, building engineering, heat transfer through double glazing windows, 

geophysical applications, etc. Natural convection in enclosures can be historically classified in 

three groups: enclosure heated from below and cooled from above (Rayleigh–Benard 

problem), differentially heated enclosures, and enclosures with cross thermal boundary 

conditions. Several works about natural convection in many different areas are available, with 

experimental and numerical approaches. Chu et al. [1] investigated the effects of localized 

heating in rectangular channels. A numerical study was carried out by Refai et al. [2, 3] to 

investigate the influence of discrete heat sources on natural convection heat transfer in a 
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square enclosure filled with air. Nelson et al. [4] experimentally investigated the natural 

convection and thermal stratification in chilled-water storage systems. An experimental study 

of low-level turbulence natural convection in an air filled vertical square cavity was 

conducted by Ampofo et al. [5]. Adeyinka et al. in their work developed an uncertainty 

analysis for a newly measured variable of local entropy production [6]. Entropy production 

was measured with post-processing and spatial differencing of measured velocities from 

particle image velocimetry, as well as temperatures obtained from planar laser induced 

fluorescence. Poujol [7] experimentally and numerically investigated the transient natural 

convection in a square cavity heated with a time-dependent heat flux on one vertical. Oliveski 

et al. [8] analyzed numerically and experimentally the velocity and temperature fields at 

natural convection inside a storage tank. A finite element method was used to investigate the 

steady laminar natural convection flow in a square cavity with uniformly and non-uniformly 

heated bottom wall, and adiabatic top with cold vertical walls [9]. The effects of different 

Prandtl and Rayleigh numbers were investigated based on comprehensive analysis of heat 

flow pattern using Bejan’s heatlines concept [10]. Beya et al. [11] investigated numerically 

the natural convection flow in 3-D tilted cubic enclosure at angle with respect to the vertical 

position. The enclosure was heated and cooled from the two opposite walls while the 

remaining walls were adiabatic. 

The lattice Boltzmann method (LBM) is a powerful numerical technique based on 

kinetic theory for modeling the fluid flows and physics in fluids [12-16]. In the last decade the 

LBM has evolved as a significant success alternative numerical approach for the solution of a 

large class of problems. The advantages of LBM, in comparison with the conventional 

computational fluid dynamics (CFD) methods, include simple calculation procedure, easy and 

robust handling of complex geometries, simple and efficient implementation for parallel 

computation, and others [12, 16, and 17]. Several natural convection, 2-D and 3-D, problems 

have been simulated successfully with the different thermal lattice Boltzmann models or other 

Boltzmann-based schemes [18-25].  

Optimized design of heat systems can be obtained within minimizing of entropy 

generation. Decreasing of entropy generation in heat transfer systems will make great increase 

in their performance. This field was attending greatly at fields such as cross-flow heat 

exchangers, power plants, energy storage systems, and refrigeration usages. Entropy genera-

tion is associated with thermodynamic irreversibility which exists in all heat transfer 

processes. By design consideration, minimizing of the entropy generation was investigated on 

heat transfer and thermal analysis of thermodynamics second law. Notable researches have 

been done to investigate importance of entropy generation in thermal systems. The early 

works for optimization design with minimizing the entropy generation were done by Bejan 

[26-31].  

Demirel et al. [32] investigated the entropy generation due of heat transfer and fluid 

friction in a duct with isotherm walls. They reported that minimizing entropy generation will 

give a criterion to system optimization, and also that entropy generation can be minimized 

with proper selection of operating conditions and design parameters. In the work of Sahin 

[33], a comparative study of entropy generation inside of ducts with different shapes and 

determination of optimum duct shape subjected to isothermal boundary condition was done. 

Narusawa [34] made an analytical and numerical analysis of the second law for flow and heat 

transfer in a rectangular duct. In a more recent study, Mahmud et al. [35, 36] applied the 

second law analysis to fundamental convective heat transfer problems for non-Newtonian 

fluid through a channel between two parallel plates. Aïboud-Saouli et al. [37] investigated 
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entropy generation in a laminar, conducting liquid flow inside a channel made of two parallel 

heated plates under the action of transverse magnetic field. They also examined the effect of 

viscouse dissipation on velocity, temperature and entropy generation. 

In the study of Delaver et al. [38], the LBM was employed to investigate the effect 

of the heater location on entropy generation, flow pattern, and heat transfer in a cavity 

numerically. The study was carried out for heater length of 0.4H which is located at the lower 

wall of the cavity. The simulations were performed for Rayleigh numbers from 10
3
 to 10

6
 at 

Pr = 0.71. Results showed that the location of heater and Rayleigh number have great effects 

on the flow pattern and temperature fields in the enclosure and subsequently on entropy 

generation.  

In this study, the heater part is located at left side wall of the cavity. The effect of 

heater location and Rayleigh number on overall heat transfer inside a square enclosure was 

investigated. A 2-D thermal LBM with 9 velocities, D2Q9, is used to solve the thermal flow 

problem. The simulations in each configuration have been made for Rayleigh numbers 

changing from 10
3
 to 10

6
. Then to optimize system thermodynamically, the second law 

analyze has been applied to models and entropy generation has been calculated for different 

models to obtain optimum model. 

The lattice Boltzmann method 

In this study, the D2Q9 model has been used (fig. 1).  After  introducing  Bhatnagar-

-Gross-Krook approximation, the general form of lattice Boltzmann equation with external 

force can be written as [14, 22]: 
 

 eq
k(x c , ) (x, ) (x, ) (x, ) Fk k k kk

t
f t t t f t t f t tf




       
 

 (1) 

 
where t  denotes lattice time step, kc is the discrete lattice velocity in direction k, kF  – the 

external force in direction of lattice velocity, t denotes the lattice relaxation time, and eq
kf  is 

the equilibrium distribution function. The local equilibrium distribution function determines 

the type of problem that needs to be solved. 

The equilibrium distribution functions are calculated with: 
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where wk is a weighting factor depending on the lattice Baltzmann model used, r – the lattice 

fluid density and  
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To consider flow and temperature fields, the thermal LBM utilizes two distribution 

functions, f
 
and g, for the flow and temperature fields, respectively. The f

 
distribution function 

is as same as discussed above; the g distribution is as: 
 



Aghajani Delavar, M., et al.: Effect of Discrete Heater at the Vertical Wall of … 
426  THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 423-435 
 

 eq

g

(x c , ) (x, ) (x, ) (x, )k kk k k

t
t t t t t g tg g g




      
 

 (4) 

 
The corresponding equilibrium distribution functions are defined as [14, 22, 38]: 
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Having computed the values of these local distribution functions, the flow properties 

are defined as: 
 

– flow density                                               k
k

f    (6) 
 

– momentum                                            i ck ki
k

u f    (7) 
 

– temperature                                               k
k

T g   (8) 

 

where subscript i denotes the component of the Cartesian co-ordinates which implied 

summation for repeated indices. The Boussinesq approximation was applied and radiation 

heat transfer is neglected. In order to incorporate buoyancy force in the model, the force term 

in eq. (1) needs to be calculated as below in vertical direction (y): 
 

 Fk = 3wkgy brq ck  (9) 
 

where  is the thermal expansion coefficient, yck – the y-component of ck , r and q are local 

density and dimensionless temperature, respectively. To simulate the natural convection 

problems with the LBM, it is necessary to determine the characteristic velocity V = (bgyDTH)
1/2 

and then to obtain the corresponding kinetic viscosity (n) and thermal diffusivity (a) through 

the following relationships involving the Prandtl number and Rayleigh number, respectively 

[15]: 

 2 2
2 Pr

,
Ra Pr

V H 
    (10) 

 
It implies that for different Rayleigh numbers both the kinetic viscosity (n) and 

thermal diffusivity (a) cannot be fixed as constants in LBM simulations if the characteristic 

velocity (V) is kept constant (more information in [15]). The relaxation times, tn and tg, for 

flow and temperature lattice Boltzman equations given in eq. (1) and (4) can be determined by 

tn = n/ 2 0.5sc t  and tg = a/ 2 0.5sc t 
 

Entropy generation 

Volumetric entropy generation due to heat transfer, TS  , and due to friction, PS   , are 

calculated as below: 
 

 
2

T P2
( ) ,

k
S T S

TT


     (11) 

where  is defined by: 
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and the total volumetric entropy generation can be obtained by: 

 
 gen T PS S S     (13) 

 
The non-dimensional entropy generation rates, *

PS , *
T ,S and *

genS  in whole domain 

are defined by: 
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Boundary conditions 

The distribution functions out of the 

domain are known from the streaming process. 

The unknown distribution functions are those 

toward the domain. Regarding the boundary 

conditions of the flow field, the solid walls are 

assumed to be no slip, and thus the bounce-

back scheme is applied. This scheme specifies 

the outgoing directions of the distribution 

functions as the reverse of the incoming 

directions at the boundary sites. From the 

streaming process the distribution functions 

out of the domain are known. The unknown 

distribution functions are those toward the 

domain. In fig. 1 the unknown distribution 

function, which needs to be determined, are 

shown as dotted lines.  
For example for flow field in the north 

boundary the following conditions is used 

 

 f4,n = f2,n,     f7,n = f5,n     f8,n = f6,n (15) 
 

where n is the lattice on the boundary. 

Furthermore, for the temperature field, the local temperature is defined as in eq. (8). 

The treatment of the temperature population (i. e. the distribution function g) at the adiabatic 

walls can be simplified by applying the bounce-back scheme to the temperature distribution 

function gk such that a “heat flux-free state” is obtained in each lattice direction for the 

specific nodes associated with the adiabatic boundary condition. Applying this treatment for 

adiabatic walls yields (for bottom adiabatic boundary): 
 

 g3,n = g3,n–1,   g6,n = g6,n–1,   g7,n– 1 = g7,n–1 (16) 

 
Figure 1. Domain boundaries and known 

(solid lines) and unknown (dotted lines) 
distribution functions 
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where n is the lattice on the boundary and n – 1 denotes the lattice inside the cavity adjacent 

to the boundary. For isothermal boundaries such as bottom hot wall the unknown distribution 

functions are evaluated as: 

 g2,n = Th(w2 + w4) – g2,n 

g5,n = Th(w5 + w7) – g7,n 

g6,n = Th(w6 + w8) – g8,n 
(17) 

Computational domain 

The computational domain is a square 

cavity in which the left side and horizontal 

upper walls are isotherms. The heater (hot 

wall) is located at the right side wall of the 

cavity with length equal 0.4H and remained 

areas are adiabatic (fig. 2).The distance 

between heater and upper cold wall (S/H) 

changing from 0 to 0.6. In this study the 

Rayleigh number changes between 10
3 

and 

10
6
.  

The Rayleigh number (Ra) and Nusselt 

number (Nu) for the current problem are 

defined as follows: 
 

 
3

Ra
yg TH




  (18) 

 
Local Nusselt numbers are defined on isothermal walls in x- and y-directions as 

below:  

 
xx
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 (19) 

 
The numerical simulation was done by in house code which was written in 

FORTRAN using LBM. The written code was validated for the problem of natural convection 

within a 2-D square cavity [15, 39]. As mentioned before the simulations were based on the 

D2Q9 model. The Prandtl number was assumed to have a constant value of 0.71 in every 

case.  

For validation and grid independency, the averaged Nusselt number was calculated 

at different Rayleigh numbers for different grid points. Table 1 shows the computed averaged 

Nusselt numbers in comparison with previous works (Kao et al. [15] and de Vahl [39]) for the 

grid point from 80  80 to 110 110. It is due to the results presented at tab. 1; the grid point 

100 100 was selected for all numerical simulations. Regarding to tab. 1, results show a good 

accuracy in comparison with previous studies. 
 

 
Figure 2. Schematic geometry of problem 
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 Table 1. Comparison of averaged Nusselt numbers computed at different  
               Rayleigh numbers using different grids with results presented in  
               [15], and [39]) 

 

 

 

 

 

 

 

 

Results and discussion 

In this study, the LBM has been 

used to investigate the effect of the 

heater location over the natural 

convection heat transfer and entropy 

generation. The fluid near the hot 

surface is warm and buoyancy effect 

causes to raise the fluid in cavity. The 

hot fluid carries heat to cold walls and 

moves to bottom of the cavity. This 

procedure repeats and creates a 

recirculation area. When the heater part 

moves to the cold wall (S/H → 0.0), 

the hot fluid contacts to the cold wall 

immediately and becomes cold. This 

phenomenon causes to reduce the 

thermal diffusion in the cavity and 

subsequently the flow field and 

temperature gradient are dependent to 

the heater location intensively (fig. 3).  

At low Rayleigh number, only one 

main recirculation region creates at the 

cavity which is independent from the 

heater location. While by increasing the 

Rayleigh number, a sensitive variation 

is observed in the flow field especially 

at the S/H = 0.0 (figs. 3 and 4). At high 

Rayleigh number, a small recirculation 

area is observed at the right side of the 

cavity when the heater is at S/H = 0.0 

(fig. 3). At the low Rayleigh number, 

the dominant mechanism of heat trans-

fer is conduction which is observed by 

the parallel isothermal lines (fig. 4).  

Ra 1,000 10,000 100,000 1,000,000 

de Vahl Davis [39] 1.118 2.243 4.519 8.825 

Kao et al. [15] 1.113 2.231 4.488 8.696 

Present 
study 

110 × 110 1.130 2.276 4.584 8.851 

100 × 100 1.131 2.278 4.578 8.833 

80 × 80 1.134 2.285 4.581 8.770 

 
Figure 3. Streamlines and isotherm contours at  

Ra = 106 (color image see on our web site) 
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On the other hand, by increasing the 

Rayleigh number the mechanism of the 

heat transfer conjugates between con-

duction and convection and finally the 

convection is dominant heat transfer 

mechanism at high Rayleigh number. 

Variations of the flow and tempera-

ture fields affect the heat transfer para-

meters such as Nusselt number. The 

variations of the averaged Nusselt num-

ber over the different walls of the cavity 

at different Rayleigh numbers are 

shown in fig. 5. By decreasing the S/H, 

Nusselt number reduces which is due to 

the change of recirculation shape. On 

the other hand, the Nusselt number 

increases over the upper wall of the 

cavity at lower S/H. Accumulation of 

the several streamlines near the upper 

wall causes to increase the heat transfer 

from it. By increasing the distance be-

tween heater and cold wall, the heat 

transfer rate over the surface of the 

heater decreases. For the adjacency of 

heater and cold walls in the model with 

S/H = 0.0, the flow field has less effect 

on heat transfer rate from heater wall, 

so this model has less sensitively by 

increasing the Rayleigh number. 

The value of entropy generation in 

flow field contains two parts: fluid fric-

tion and heat transfer. In laminar natu-

ral convection in cavity, the velocity 

gradient is small in comparison with 

temperature gradient so the entropy 

generation due to the friction is very 

small. The total dimensionless entropy 

generation for different positions of the 

heater at different Rayleigh numbers is shown in fig. 6. When the heater goes toward to the 

cold wall (decreasing S/H) the temperature gradient increases so the dimensionless entropy 

generation increases. The distribution of the temperature contours is changed and subse-

quently the heat transfer from hot wall increases by increasing the Rayleigh number. This 

temperature contours causes to decrease the dimensionless entropy generation (see eq. 14). It 

can be seen that the maximum value of dimensionless entropy generation in all heater part 

location is achieved when Rayleigh number equals 10
4
. 

 

Figure 4. Streamlines and isotherm contours for  
S/H = 0.4 (color image see on our web site) 
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According to the temperature contours, the 

mechanism of the heat transfer changes from 

conduction to the convection by increasing the 

Rayleigh number. This variation of heat trans-

fer mechanism effects on the temperature 

gradient and subsequently increases the en-

tropy generation. At Rayleigh number higher 

than 10
4
, the heat transfer rate increases more 

than the temperature gradient, so the entropy 

generation decreases. This is due to the 

dominant of the convection heat transfer in the 

cavity at high Rayleigh number.   

Aghajani Delaver et al. [38] investigated 

the effect of the heater location on entropy 

generation, flow pattern, and heat transfer in a 

cavity which heater was located at the hori-

zontal wall of the cavity. For better inves-

tigation, the results of [38] and this study were compared to gather in the following parts. The 

new averaged Nusselt number was defined by eq. 21 which is mean of the total Nusselt 

number over the cold walls and then the ratio of the present to previous studies [38] was 

computed: 
 

 left up

average

Nu Nu
Nu

2


  (20) 

 

 average-1

ratio
average-2

Nu
Nu

Nu
  (21) 

 
In eq. 21, the index 1 and 2 turn on to the present study and results of [38], 

respectively. This ratio was also calculated for averaged Nusselt number over the heater part 

(fig. 7). Figure 7 shows that the heat transfer rate over the heater part is higher than when the 

heater was located over the horizontal wall at all Rayleigh numbers and heater locations. By 

increasing the Rayleigh number, the mechanism of heat transfer changes from the conduction 

 
Figure 5. Variation of the averaged Nusselt number over the different walls for different S/H and Rayleigh 
numbers 

 
Figure 6. Non-dimensional volumetric entropy 

generation for different S/H at different 
Rayleigh numbers 
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to convection heat transfer. At Ra = 10
3
, when the heater was located at the vertical wall, the 

dominant heat transfer mechanism is conduction. While for heater located at the horizontal 

wall, the heat transfer is affected by conduction and convection mechanisms.  It should be 

mentioned that direction of the flow field is counter clockwise, so the heater surface is in 

direction of the cold fluid when is located at the horizontal wall. On the other hand, the hot 

flow must go longer distance to reach the cold walls of the cavity which causes to decrease 

the flow temperature and subsequently decreases the heat transfer from the cold walls. This 

phenomenon is unlike when the heater part is located at the vertical wall of the cavity. The 

averaged Nusselt number over the colds walls shows that the heat transfer increases when the 

heater part was located at the vertical wall except for S/H = 0.2 at Rayleigh number equal 10
4
. 

It is due to the transition of the heat transfer mechanism from the conduction to convection. 

 

 

Figure 7. Ratio of the averaged total cold walls Nusselt number and heater surface Nusselt number vs. 
Rayleigh numbers for different S/H. The geometry of previous study[38] is in the left side 

 

The dimensionless entropy generation 

ratio *
genS  is shown in fig. 8 which was 

calculated by eq. 22. By increasing the 

temperature gradient in the cavity, the 

dimensionless entropy generation in the 

present study is more than the previous 

study which the heater was located at the 

horizontal wall. When the heater was lo-

cated near the cold upper wall, the maxi-

mum temperature gradient exists in the 

cavity which causes to increase the entropy 

generation. By increasing the Rayleigh 

number, the convection heat transfer in-

creases and subsequently the distribution of 

the temperature in the cavity is more mo-

notony in comparison with low Rayleigh 

number. This variation in the temperature 

distribution causes to decrease the entropy generation. When the heater was located on the 

horizontal wall, this effect is more visible which is clear in fig. 8.  
 

 
Figure 8. Ratio of non-dimensional volumetric 
entropy generation vs. Rayleigh number for 
different S/H 



Aghajani Delavar, M., et al.: Effect of Discrete Heater at the Vertical Wall of … 
THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 423-435 433 
 

 *
gen-1*

gen-ratio *
gen-2

S
S

S
  (22) 

Conclusions 

In this study, the numerical simulation was done using 2-D thermal lattice 
Boltzmann method with the Boussinesq approximation. This study investigates the effect of 
changing the heater location on natural convection flows and entropy generation with non-li-
near phenomena within enclosed rectangular cavities. By increasing the S/H, Nusselt number 
rises for left and heater wall which is due to the amplifying the recirculation regions. The 
heater location has a main effect on the flow field and subsequently on temperature 
distribution in the cavity. The variation of the temperature contours shows its effect on the 
total dimensionless entropy generation in cavity. With increasing the Rayleigh number, the 
dimensionless entropy generation decreases at all heater positions. In comparison with authors 
pervious study it has been observed that the geometry in which the heater parts were located 
at side wall, were more sensitive to S/H. 

The results show that heat transfer increases from the cold walls when the heater 
located on the vertical wall. The heat transfer rate increases from the heater surface when the 
heater located on the horizontal wall of the cavity. 

Nomenclature 

ck  –  discrete lattice velocity in direction k  
Fk  –  external force in direction of lattice  
 –  velocity 

eq
kf   –  equilibrium distribution 

H –  duct width, [m]  
k –  thermal conductivity, [Wm–1K–1]  
Nu –  local Nusselt number, (= hx/kf), [–] 
Pr –  Prandtl number, (= n/q), [–] 
Q –  heat transfer, [W]  
Ra –  Rayleigh number, (= gy bDTH3/an), [–] 

genS  –  total volumetric entropy generation rate, 
 –  [Wm–3K–1]  

PS   –  volumetric entropy generation rate  
 –  due to friction, [Wm–3K–1]  

TS   –  volumetric entropy generation rate  
 –  due to heat transfer, [Wm–3K–1]  
Tc –  cold temperature, [K]  
Th –  hot temperature, [K]  
Dt –  lattice time step 
u, v –  horizontal and vertical components  
 –  of the velocity, [ms–1]  
V –  characteristic velocity of natural  
 –  convection (= bgyDTH)1/2, [ms–1] 
  

Greek symbols 

a –  thermal diffusivity, [m2s–1] 
b –  thermal expansion coefficient, [K–1] 
q –  dimensionless temperature, (T – Tc/Th – Tc) 
m –  molecular viscosity, [kgm–1s–1] 
n –  kinetic viscosity, [m2s–1] 
r –  density, [kgm–3] 
t –  lattice relaxation time 
wk –  weighting factor 

Subscripts 

c –  cold 
gen –  total generated 
h –  hot 
T –  due to heat transfer 
P –  due to friction 
k –  streaming direction 
i –  i-direction 
y –  y-direction 

Superscript 

eq –  equilibrium 

Acronym 

LBM –  lattice Boltzman method 
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