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Paper presents application of the Gauss estimation procedure in meas-
uring thermal diffusivity using the laser pulse method. Unlike the well-
known direct procedure originally established by Parker et al. and its
variations, this one belongs to the so-called inverse technique, which
makes use of the complete measured signal. Paper describes how to
achieve minimum deviation between estimated and experimental curves
and to obtain more accurate results proposing an estirnation procedure
with extended number of parameters in three steps.

Introduction

The original laser pulse method of measuring thermal diffusivity [1] assumes
ideal boundary and initial conditions, i.e. zero heat loss, infinitely short laser pulse, and
uniform heating of the sample face. Simplicity of the method is marred in practice by
difficulties of realising these idealised conditions. Thanks to theoretical and experimental
work of many researchers, the original concept has been gradually improved to take into
account real experimental conditions. Review of these contributions is given in [2].

Corrections following publication of the original work [1], were virtually all
directed toward correcting measured half-rise time of the transient. In mathematical
sense these procedures are known as direct approaches to thermal diffusivity determina-
tion. Possibilities of modern data acquisition and data reduction systems, however, offer
much more than procedures limited to the analysis of the half-rise time, or few points
more. Distinct advantages offered by the inverse method should be used instead, as for
thermal diffusivity identification it relies on the complete transient response. Due to
minimum deviation between theoretical and experimental curve achieved in this ap-
proach it results in a better reliability and efficacy of thermal diffusivity measurement.

For the flash method it is convenient to use the parameter estimation procedure,
which enables simultaneous determination of more than one parameter from the same
temperature response. Possibilities of such determinations are influenced by the sensi-
tivity coefficient of each single parameter. Sequential analysis estimating beside thermal
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diffusivity the maximum temperature rise has been applied [3]. The Gauss estimation
procedure, however, could extend estimation to additional parameters, like the Biot
number, laser pulse-width, and the onset of the temperature response.

Gauss estimation procedure

Generally, all approaches are based on minimising the difference between the
measured values and corresponding values obtained by the mathematical model. Among
several of them the Gauss parameter estimation procedure [4, 5] has been preferred. It
is used in a non-linear case of estimation, i. e. when sensitivity coefficients are parameter
dependent. For example, sensitivity coefficient of thermal diffusivity in the laser pulse
method is strongly non-linear dependent on thermal diffusivity. This approach is also
attractive because it is relatively simple and because it specifies direction and size of the
parameter vector corrections.

Some parameters of the applied model can be estimated easier, some not. There
are criteria that one must comply with if reliable results for a given parameter [6] are
wished. In that sense, sensitivity coefficients play the most important role, giving an
information about estimation possibilities of desired parameter. They are defined by

oT/db, - OT/db,
X=| : 1)
oT,10b, - OT,I0b,

where T} is a value calculated from the model at the time 7; (j = 1,..., n), n is the number
of measured values, b;is the i parameter (i = 1,..., p), and p is the number of parameters
for estimation. Sensitivity coefficients are analysed for each model in particular, and also
for different parameter values of the same model. Usually their normalised values are

analysed, defined as
s aT;
X;= b; P ()
L

Sensitivity coefficients given in Eq. (2) are compared to indicate parameters
which might be simultaneously or separately estimated with desired accuracy. The
general criterion is that these coefficients should be linearly independent as much as
possible, and having high and mutually comparable values.

In practice, sensitivity coefficients are usually very complex functions of parame-
ters. Therefore, their values may be numerically calculated using an approximate formula
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where 8b; is of the order of 1073b; or 107b;.
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Starting from the maximum a posteriori (MAP) criteria [5] and linearising the
temperature T using the Taylor series, the Gauss iterative equation has the following
form:

b* = p® 4 [XTOWX® + U] {XT(">W[Y ~T® p®) |+ Ufp-b® ]} ()

where Y is the matrix of measured values [nx1], T is the matrix of calculated values from
the model [nx1], b is the matrix of parameters [px1], 1 is the matrix of a priori parametric
values [px1], W is the variance-covariance matrix of measured values [nxn], and U is the
variance-covariance matrix of parameters a priori [pxp]. The variance-covariance matrix
has a form W™, where diagonal elements of matrix W are variances of each measured
value, since other elements represent a degree of correlation among measured values.
When the correlation is absent, the matrix W is diagonal. The iterative procedure (4)
should be ceased when the following condition is satisfied:

bi(k+1) iy b,(k)

b (5)

i being 1 to p, where 9 is a number of order 104, and £ <1071 to avoid dividing by zero.
Standard deviation of estimated parameters b, could be calculated from the

approximated expression:
o2~ —[V-1®) ] [V - T(5) ] diag(X"X)™ (6)
b mp

Beside this standard deviation value that represents a criterion of estimation
accuracy, one could define the normalised sum of relative differences between estimated
theoretical curve and the experimental response as another convenient criterion for the
reliability of estimated parameters. This sum can be expressed as:

Jlcind
s(T)==2&;(T) )
n ]=1
with T (bI~Y
= § W | o,
&=~ ®

Estimated parameters are more reliable if the sum s(7’) has a smaller value. For
better insight into exactness of estimation, it is convenient to compare the sum (7) with
a new sum s(P) calculated with differences £(P) instead of &(T). P is a [nx1] matrix
of values which represent a polynomial curve of a high degree (8™ or 9'") fitted through
the experimental signal in the estimation range. Supposing that polynomial P is the best
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fit, sum s(P) is the minimum possible, so previous criterion could be rather a ratio
between sums s(7) and s(P), L.e.

40

S(P) ©)

It follows that agreement between theoretical and experimental curves is better
and estimated values are more reliable when the ratio n is closer to 1. In practice both
described criteria, (6) and (9), should to be used.

Estimation procedure applied to the
laser pulse method

Theoretical model

In the laser pulse method the model is represented by the temperature response
of the sample rear side. Let the laser pulse with a short duration 7, be absorbed uniformly
in a very thin layer of the front side of the specimen. If one measures transient tempera-
ture of the whole specimen rear side, mathematical expression of the temperature
response is [7, 8]:

B i 208, =22 +Bi2y

Al z; B
.expli_af[F + i—zj} J-CXP[M(F + %‘] ]f(fafp )dz (10)

0
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where 7 is time (7>1,,), Bip, = A L/A and Big = hR/A are the Biot numbers for base and
lateral sample sides respectively, 4, and hy are the radiative heat transfer coefficients
(axial and lateral heat losses), L and R are the sample thickness and radius respectively,
A is thermal conductivity, a is thermal diffusivity, and f(z, 7,) is a dimensionless function
describing the laser pulse as a function of time. Because experiments are usually per-
formed under vacuum conditions, convective and conductive heat losses from the sample
are neglected, and the only important mode of heat exchange is radiative heat transfer.
T,, is equal to Q/(LpC,), and represents the maximum temperature rise when by, = hg = 0.
Q is absorbed laser energy per square meter, C, is specific heat, and p is density.
Coefficients 8, and Z; (n, i = 1,2, 3...) are positive roots of corresponding transcendental
equations [7].

The temperature response at short times (<1,) could be calculated from the
same expression (10), but with uppers limits  instead of 7, in both integrals.
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Estimation possibilities

Theoretically all constants in (10) could be treated as parameters for estimation.
However, by increasing number of parameters for estimation accuracy is reduced and
vice-versa. In practice, the sample thickness L and radius R can be measured with high
accuracy, so there is no need for their estimation. Likewise, for a given laser type the laser
pulse-width 7, could be also known accurately, or determined in advance. When, however,
the laser pulse width varies from pulse to pulse, this parameter should be also estimated.

In practice both base and lateral heat losses can be considered to be the same,
so Bi; = Big'R/L = Bi. It can be shown that sensitivity coefficient of Bi is greater than
sensitivity coefficients of separate Biot numbers, giving thus better possibility for the
estimation of Bi.

Figure 1 shows selected values of sensitivity coefficients X* of four parameters
figuring in Eq. (10). Sensitivity coefficients were calculated using Eq. (3), fora = 6.5-10 m%/s
and rectangular pulse function f(7,7,). It shows that absolute values of sensitivity coefficients

X :,, and X are one or two orders less than these of @ and T,,. This difference

£=3.64 mm, R=5.21 mm, 4=6.5-10" m’/s,Bi =3-10°, 1 =1 ms, 7 =1K
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Figurel. Normalized sensitivity coefficients of parameters a, T, Bi, and 7,
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complicates simultaneous estimation of these four parameters. However, sensitivity
coefficients of all four parameters are linearly independent within certain time range,
especially in the period of temperature rise. This allows their simultaneous estimation
despite considerable differences in absolute values, particularly when high accuracy of
parameters 7, and Bi is not required.

Since parameter 7,, affects the model only as a multiple factor its sensitivity
coefficient has the same form and values as the temperature response. Therefore, the
parameter T}, is best estimated around the maximum of the signal. Further, Fig. 1 shows
that the most preferable estimation range is the descending part of the signal for Bi, the
initial portion of the signal for parameter 7,, and the ascending part for parameter a.
According to this, one could establish the following procedure for accurate thermal
diffusivity measurement simultaneously with other parameters.

Procedure for thermal diffusivity measurement

According to the above analysis, derivation of thermal diffusivity from re-scaled
experimental signal should be effected in the following three steps (Fig. 2):

Step 1: estimation of Bi
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& Step 3: estimation of a
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Step 2: estimation of 7,
it Time, 7

Figure 2. Three-step parameter estimation procedure applied to temperature response
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(1) The first involves estimation of Bi, from the time just before its maximum to a certain
value along its descent. This should be effected simultaneously with parameters a, T},,,
and 7, with their a priori starting values. Estimation of these three parameters is only
auxiliary, so in this step their estimated values may not be exact. This “auxiliary
estimation” improves fitting between theoretical and experimental curves. Estimation
of Bi alone would not give a good fit due to its small influence on the temperature
response, even in the range after the maximum.

(2) The second step refers to estimation of the parameter 7, in the initial portion of the
signal rise, simultaneously with a and 7, as auxiliary parameters. Due to small
influence of the parameter Bi on that portion of the signal, value Bi is fixed at the
value estimated in the first step.

(3) The third step is estimation of thermal diffusivity, ¢, with auxiliary parameter T},,.
Parameters Bi and 7, are fixed at the values estimated in previous steps. Estimation
should be effected in the time scale that corresponds to both ascending and descend-
ing portions of the temperature response.

Comparison of typical experimental and theoretical curves calculated from Eq.

(10) and their differences in the process of estimation procedure is shown on Figs. 3, 4,

and 5. After several iterations good agreement between the curves in all 3 steps could be

seen, suggesting that estimated values (Bi, 7,, or a) should be very close to the real ones.

In this estimation procedure 7,, always serves as an auxiliary parameter. It
improves the fitting process leading to lesser deviation between theoretical and experi-
mental curves, i.e. to the lesser value of n. Its accurate value should be rather calculated
directly from the temperature response itself.

Uncertainty of estimated parameters

The parameter estimation procedure in three steps helps to obtain the highest
accuracy and reliability of thermal diffusivity. While in the first two steps one obtains
accurate values of Bi and 7,,, in step 3 one gets the final value of a.

The highest measured uncertainty A of each parameter is three timesits standard
deviation calculated from Eq. (6). In most cases 4 of estimated thermal diffusivity, 4,,
obtained in step 3, amount to about 0.1%. To this value one has to add the uncertainty
L of parameter A4;. Uncertainty Ag of the sample radius R can be neglected due to its
small contribution to overall accuracy.

Uncertainty of other parameters depends on the portion of the signal that is
used in estimation. In step 1 parameter Bi is estimated with the high accuracy and its
value is closest to that in reality so it is used as fixed in steps 2 and 3. While some methods
in the calculation of Bi deal with limited number of signal points, for example [9], this
procedure suggests using of complete descending part of the experimental signal ensuring
thus high accuracy of the obtained value of Bi. In all examined cases uncertainty A ; fell
within the range from 0.4% to the maximum of 5%, depending on noise level and
deviations of the experimental response.
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All methods for finite pulse width correction assume that the value of 7, is
already known. In that sense, if 7, is previously known, step 2 could be omitted in
estimation procedure described in this paper. On the other hand, if pulse duration z, is
non-stable for a given laser one should estimate this parameter. The greatest accuracy of
7, i then obtainable in step 2, where one uses the initial portion of the signal. In all
examined cases uncertaintyA,P was between 2% and 15%, and due to its small influence

on overall accuracy such estimated value 7, was used as fixed in step 3.

Experimental testing

In order to test the foregoing, Gauss estimation procedure was applied to signals
obtained with samples of tungsten and alumina (Al,O3). Tungsten has been selected for its
relatively high thermal diffusivity and good stability of its thermophysical properties over a
wide temperature range, while alumina was a choice for its relatively low thermal diffusivity.
Translucence and porosity of alumina could contribute however to the inaccuracy of obtained
values. Tungsten sample was NBS SRM-1468 thermal conductivity reference material, and
alumina was studied within the NPL organised inter-laboratory comparisons of thermal
diffusivity measurement technique [10]. Both samples were 10 mm in diameter. The samples
of tungsten and alumina were 3.64 mm and 1 mm thick, respectively.

Temperature responses were analysed using the described inverse technique. In
both cases parameters L and R were considered to be invariant. A priori value for 7, was 1
ms. Other a priori values were taken from each particular temperature response and the
referent signal level. Correction for thermal expansion was not applied to either of materials.

For comparison sake, a direct procedure according to Heckman [11] was also
applied. This method, based on the original Parker analysis was chosen because it uses
corrections for the finite laser pulse and the heat loss effects, which were both present in
the above measurements.

Present results for tungsten are shown in Fig. 6, together with the tungsten
thermal diffusivity values calculated from the NBS tungsten thermal conductivity refer-
ence data [12] and the literature data for specific heat [13] and density [14], and the
CINDAS recommended thermal diffusivity values of tungsten [15].

For Heckman and estimation data reduction procedures, experimental data
were fitted with respective polynomials of the 4™ degree, and in Fig. 6 data points were
taken from these interpolated functions. Deviation of individual values from their
corresponding polynomials never exceeded 1.5%. It can be seen that thermal diffusivity
values obtained with two data reduction procedures lie within 2.6% limits in the whole
measurement range. They are also in good agreement with the NBS calculated values.
Results of the direct approach and those determined by estimation procedure lie rela-
tively close to each other.

Present results for alumina are shown in Fig. 7, together with thermal difussivity
literature data of Bertier, Chang ef al., Plummer et al. and Rudkin et al. taken from the
TPRL Data Series [16]. For both reduction procedures applied experimental data were
fitted with respective polynomials of the 5% degree, and data points in Fig. 7 were taken
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from these interpolated functions. Deviation of individual values from their correspond-
ing polynomials never exceeded 1%. Differences between results obtained using different
procedures are similar to those obtained for the tungsten sample.

Regarding measuring uncertainty of final results, there are no significant differ-
ences between two applied procedures. However, because of large number of applied
signal points for the estimation of all parameters, results obtained by Gauss estimation
procedure are more reliable, particularly when one uses noisy and/or deformed signals.
That explains small differences among thermal diffusivity values obtained in this experi-
mental testing shown on Figs. 6 and 7.

Conclusion

The laser pulse method, the most versatile and the most popular method of
measuring thermal diffusivity of solid materials in a wide temperature range has been
subject of continuing improvements since its appearance in early sixties. Most of them
refer to improvements of the original direct approach. The last decade, however, has
evidenced appearance of contributions applying inverse approach to this purpose.

The Gauss estimation procedure used in this work belongs to the latter. It uses
the whole transient response for obtaining information about thermal diffusivity and
other parameters such as the Biot number and the laser pulse-width. Proposed three-step
procedure, a separate estimation of different parameters in different parts of the tem-
perature response, might-be a contribution to the reliability and accuracy of thermal
diffusivity measurement, particularly with noisy and/or deformed signals.
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Nomenclature

— thermal diffusivity

— matrix of parameters in estimation procedure
— matrix of estimated parameters

single parameter in estimation procedure
total Biot number

— specific heat

dimensionless laser pulse function
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ST

— radiative heat transfer coefficient

— index

— index of iteration

— sample thickness; axial (as index)

— total number of signal points

— number of parameters in estimation procedure

— matrix of polynomial values

— absorbed laser energy per square meter

— sample radius; radial (as index)

- normalized sum of differences between experimental and theoretical curves
— matrix of calculated values from the model

— maximum temperature rise

— variance-covariance matrix of parameters a priori
— variance-covariance matrix of measured values

— matrix of sensitivity coefficients

— normalized sensitivity coefficient

— matrix of measured values

— roots of corresponding transcendental equation

Greek symbols

B n
1)

— roots of corresponding
transcendental equation

— difference between experimental e P
and theoretical curves H — matrix of parameters a priori

— measured uncertainty of J7 4 — density AE2
estimated parameter g — standard deviation of
— increment of b; estimated parameters
— relative difference between T — time
experimental and theoretical curves 7, — laser pulse-width
— ratio between sums as criterion of & — arbitrarily small number
reliability of estimated parameters 4 — variance matrix of measured values

g — condition for iterative procedure
A — thermal conductivity

References

(1]
(2]

(3]
(4]

[11]
84

Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L., J. Appl. Phys. 32 (1961), p. 1679

Taylor, R. E., Magli¢, K. D., in Compendium of Thermophysical Property Measurement Methods, Vol. 2:
Survey of Measurement Techniques (Eds. K. D. Magli¢, A. Cezairliyan, V. E. Peletsky, Plenum Press, New
York, 1984, pp. 305-336

Raynaud, M., Beck, J. V., Shoemaker, R., Taylor, R., Thermal Conductivity 20 (1989), Plenum Publishing
Corporation, pp. 305-321

Tarantda, A., Inverse Problem Theory — Methods for Data Fitting and Model Parameter Estimation,
Elsevier Science Publishers B. V., Amsterdam, 1987

Beck, J. V., Arnold, K. J., Parameter Estimation in Engineering and Sciences, John Wiley and Sons, New
York, 1977, pp. 340-351

Raynaud, M., Métrologie thermique et techniques inverses Centre CNRS d'Aussois: Cours 6 (1995), pp.
20-25

Watt, D. A, Br. J. Appl. Phys. 17 (1966), p. 231

Yamane, T., Katayama, S., Todoki, M., Int. J. Thermophys. 18 (1997), 1, pp. 269-290

Cowan, R. D., J. Appl. Phys., 34, (1963), 926

Magli¢, K. D., MiloSevi¢, N. D., Proceedings, Thermal Conductivity 24 (1997), Technomic Publishing Co.,
pp. 673-682

Heckman, R. C., J. Appl. Phys. 44 (1973), 4, pp. 1455-1460

E



Milogevi¢, N. D.,et. al.: Thermal Diffusivity Measurements by the Laser Pulse ...

[12] Hust, J. G., Giarratano, P. J., Nat. Bur. Stand. (US) Spec. Publ. 260-52, 1995

[13] Fitzer, E, AGARD Advis. Rep. 34 (1963), pp. 926-927

[14] White, G. H., High Temp. — High Press. 11 (1979), 471-476

[15] Touloukian, Y. S, Powell, R. W., Ho, C. Y., Nikolaou, M. C, Thermophysical Properties of Matter, The
TPRL Data Series, Vol. 10: Thermal Dltfuslvxty IFI/Plenum, New York-Washington, 1973, p. 198

[16] Touloukian Y. S., Powell R. W., Ho, C. Y., Nikolaou M. C., ibid., pp. 378

Authors' addresses:

N. D. Milosevi¢, M.Sc.

Laboratory for Thermal Engineering and Energy
VINCA Institute of Nuclear Sciences

P.O. Box 522, 11001 Belgrade, Yugoslavia
phone: +381 11 45 82 22 Ext. 533

fax: +381 11453670

e-mail: nenadm@ rt270.vin.bg.ac.yu

Prof. M. Raynaud

Directeur departement Genie energetique

Institut national des sciences appliquées de Lyon

Recherche: Centre de thermique de Lyon, ESA CNRS 5008, bat. 404
20 av. A. Einstein, 69621 Villeurbanne Cedex, France

phone: +33 472 43 82 00

fax: 433472438514

e-mail: raynaud@cethil.insa-lyon.fr

Prof. Michel Laurent

Institut national des sciences appliquées de Lyon

Recherche: Centre de thermique de Lyon, UPRESA CNRS 5008, bat. 404
20 av. A. Einstein, 69621 Villeurbanne Cedex, France

phone: +33 472 43 84 41

fax: +33 47243 88 19

e-mail: timcethi@insa-lyon.fr

Prof. K. D. Maglic,

Head, Metrology Laboratory

Laboratory for Thermal Engineering and Energy
VINCA Institute of Nuclear Sciences

P.O. Box 522, 11001 Belgrade, Yugoslavia
phone: +381 11 45 82 22 Ext. 365

fax: +381 114536 70

e-mail: kostam@rt270.vin.bg.ac.yu

Paper submited: December 15, 1999
Paper revised: January 15, 2000
Paper accepted: March 15, 2000

85



	v.073
	v.074
	v.075
	v.076
	v.077
	v.078
	v.079
	v.080
	v.081
	v.082
	v.083
	v.084
	v.085
	v.086
	v.087

