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In this paper, the results of the investigation of the steady forced convec-
tion in cylindrical porous bed heated electrically by heater placed in bed
axis, are presented. The main aim of the investigation was to provide”
more data on the pressure, velocity and temperature distributions for
flow situations characterized by velocities lower than minimum fluidi-
zation velocity. The cylindrical porous bed consisting of glass spheres,
which is heated radially and symmetrically, has been taken as physical
model. The boundary conditions of the second kind (q = const.) have
been realized on the surface of heater.

By analyzing the forced convection phenomenon, the dominant mecha-
nism for heat and momentum transport, have been observed. This was
the basis for establishing the mathematical model.

The peculiarity of the mathematical modeling presented in this paper is
that the porous bed has been treated as pseudohomogeneous medium
(i.e., quasicontinuum). According to the above assumption, the basic
transport equations have been obtained by using the method of volume
averaging.

The proposed mathematical model was solved numerically by using the
control volume method. In order to perform this numerical procedure,
the original computer program has been constructed.

The obtained results of the applied prediction method for velocity and
temperature distributions give a significant verification of: the noticed
transport phenomena and its mathematical modeling, the chosen
unambiguity conditions and the validity of the applied numerical pro-
cedure.

Introduction

Phenomena of fluid flow, heat and mass transfer in porous bed are present in a
great number of technologies in :

— chemical industry (chemical and biochemical reactors, adsorbers, filtration
devices, drying processes, oil exploitation and so on);
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— energetics (regenerative heat exchangers, heat pipes, heat insulation, storage
of thermal energy and so on);

— environmental protection (removal of toxic materials from soil and ground
water, underground storage of nuclear waste materials and so on).

In recent years a considerable amount of investigations have been performed in
this field. These investigations have been directed to : the study of porous bed structures;
the analysis of the occurence and simultaneous effects of transport phenomena; the
estimation of the influence of geometric, flow and thermal conditions on transport
phenomena and to the study of the effective transport coefficients and its effect on
velocity, temperature, pressure and concentratic:z fields.

Physical model

As a basis for mathematical modeling of transport phenomena, the physical
model of a reactor (chemical or biochemical ) with packed glass sphere bed is taken (Fig.
1). The bed is bounded by cylindrical glass tube and it is heated radially and symetrically
by electric heater placed in bed axis.

It can be noted that the choice of such a physical rodel of such a reactor does
not diminish the generality of the established mathcmatical model. This mathematical
model, with small modifications, can be used for prediction of velocity and temperature

Figure 1. Physical model of reactor

2



Stojanovié, 1., Ili¢, G.: Mathematical Modeling of Heat Transfer from Immersed...

fields in various apparatuses operating under similar flow, geometric and thermal condi-
tions.

The numerical analysis results, evaluated from mathematical model, are com-
pared with experimental data from reference [6]. In this reference, the experimental data
on temperature and pressure drop measurements for forced convection of air through
the above presented model of reactor, are given. The temperatures in the bed were
measured at four different positions along radius and at three different axial positions
(heights) for various flow rate of air and different specific heat fluxes.

Mathematical model

By analyzing the forced convection phenomenon, the dominant mechanisms for
heat and momentum transport, have been observed. This was the basis for establishing
the mathematical model consisting of: continuity equation, momentum equation and
energy equation.

The peculiarity of the mathematical modeling presented in this paper is that the
porous bed has been treated as pseudohomogeneous medium (i. e., quasicontinuum).
According to the above assumption, the basic transport equations have been obtained by
using the method of volume averaging [5, 9].

In the analysis of the forced convection phenomenon and in its mathematical
modeling the special attention is paid to non-Darcian effects: boundary, inertia, non-uni-
form porosity, hydrodynamic and thermal dispersion effects.

The basic assumptions included in mathematical model are as follows:

— steady fluid flow,

— solid phase and fluid are in local thermal equilibrium,

— fluid flow is hydrodynamically fully developed,

— hydrodynamic entry length is neglected [7],

— there is a bulk flow only in-axial direction, w, = w,(r), radial component of
velocty and radial convection are neglected,

— pressure gradients exist only in axial direction,

— there is a variation of porosity only in radial direction, (¢ = £(r), non-Darcian
effect of non-uniform porosity),

- constant thermo-physical properties of fluid and solid phase,

— effective thermal conductivity Koy (7, 2) is function of porosity &(r), axial
velocity w,(r), and temperature 7(r, z); non-Darcian effect of thermal dispersion is
included by means of thermal dispersion conductivity Ky,

— conduction in axial direction is neglected,

- momentum equation after including all non-Darcian effects obtains the form
of Darcy-Brinkman-Forcheimer equation.

Taking into account the above assumptions, the proposed mathematical model
completed with the unambiguity conditions (geometric parameters of chosen system,
thermophysical properties and effective transport coefficients, initial and boundary
condition) obtain the following form:
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continuity equation: dw,(r)
2\
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momentum equation:
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where K and F are permeability and inertia coefficient, respectively, defined by Ergun-
relation [1] in the form:
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where d, is sphere diameter.

Constants @ and b have been er:pirically determined according to [1] as @ = 150
and b = 1.75. The momentum equation (2) is the so-called Darcy-Brinkman-Forchhe-
imer equation of an empirical nature. This form of momentum equation can be also
obtained by using the volume averaging method on Navier-Stokes equations [2], if the
left hand side of the obtained in such a way equation, under the condition of steady and
hydrodynamicaly fully developed flow, can be neglected.

The only modification introduced in this paper is connected with Brinkman’s
term. There is a dilemma whether the momentum diffusion coefficient is equal to fluid
viscosity up, according to original Brinkman’s equation [4], or it is equal to some effective
value uqy = pge. The value of p1.4is the result of the application of the volume averaging
method on Navier - Stokes equation. In this paper the transport coefficient y1,4 is under
differential operator, due to both the nature of numerical method and the effect of
non-uniform porosity. As an approximation for variable porosity, the empiric exponential
function of Vortmeyer & Schuster [8] hus been taken in the form:

e=s,,[1+C1exp( Nl 7 H|:1-| Clexp( -N, dr):| “
P

where: ¢. — porosity in the bulk of bed; Cy, Ny - °’npmc coefficients chosen according to
[2, 6].
The boundary conditions for equation (2) are:

Tors 7= r N 0is 2 <2 (0)i=10 ®))
for r=r, 0<z<H, w,(r)=0 (6)

oT(r, z))

energy equation:
ol(r2)milea

Bibatelr) 5 = a,( K (r)r (7

where K,g(r) is effective radial thermal conductivity, which can be given in the form:
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Ko (r) = Ko (r) + Ky (1) @)
where:
— K,(r) is the stagnant thermal conductivity, which is a function of phase thermal

conductivity and porosity.
It can be given according to [10] in the form:

T s o B T
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£

— K,(r) is the transverse thermal dispersion conductivity, which according to [2],
for Re; > 10, has the form: i W, (r)

LT W z .

K, = D;ks : Pegs - (10)
where — w,,, is the averaged velocity;

D; - empirical constant chosen according to [2, 6],

Pe,, = wy,dy/a — Peclet number,

a = kf(pgcpy) — fluid thermal diffusivity.
Boundary conditions for equation (7) are:

for z=0, r<r<r,, T=T, (11)
forgn=ur; S0 <z <H, (—Keﬂ-,g—::) =qg (12)
iieies etz (U2 Jol,  TE = Th, (13)

The mathematical model is closed by Ergun’s relation giving the connection
between the pressure drop in bed and the air flow rate:
dp Ky S
—d_z=7w2m +pf 'J—7<-—Wz", (14)

The mathematical model established in such a way is the so-called WHC (wall
heat conduction) type (according to Vortmeyer).

Numerical solution

The proposed mathematical model was solved numerically by using the control
volume method [3]. In order to perform this numerical procedure, the original computer
program in FORTRAN77 has been constructed. According to the assumption that
thermo-physical properties of fluid are constant, firstly the equation (2) with boundary
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conditions (5) and (6) was solved numerically, and the obtained velocity profile w,(r) is
used in numerical solution of energy equation (7).

Due to the form of source term (nonlinearity), the numerical solution of
equation (2) demands the iteration procedure with the convergence condition. Solution
of the discretization equations is carried out by using TDMA-procedure. The discretiza-
tion step sizes can be chosen. The discretization of the convective term in equation (7) is
carried out, according to the “upwind” scheme. Since the temperature field is two-dimen-
sional, the solution of the discretization cquations resulting from equations (7) has been
carried out by using ”line-by-line” method and TDMA-procedure.

Experimental investigation

The numerical analysis results, evaluated from mathematical model, are com-
pared with experimental data. Detailed experimental measurement of pressure and
temperature fields for different fluid flow rate and different specific heat flux verify the
proposed mathematical model [6].

According to the proposed physical model a test rig was made, with the test
section consisting of a cylindrical annular porous bed formed of glass spheres with 4.8
mm in diameter. The bed is heated radially and symmetrically from inner cylinder which
is the body of electric heater. The boundary conditions of the second kind (g,, = const.)
were achieved at the surface of the inner cylinder.

The forced air flow through the bed is in axial direction. During experimentation
the volume air flow rate is varied within 5-19 m3h. For this flow rate interval the
corresponding average velocity (Darcy’s velocity) is within 0.4-12 1.4 m/s and Re-number
within 90-350. The electric power of heater scaled to the length is varied within 40-200 W/m.

The temperature is measured at four radial positions (2, 6, 12, 20 mm from
surface of heater) and at three axial positions along the height of bed (20, 100, 180 mm).
The pressure drop is measured at five positions along the bed heiglit and the obtained
results are averaged. '

The existence of nonuniform radial temperature profile dependent on flow and
thermal conditions is stated.

Discussion and conclusions

Numerical solution of the momentum equation gives the radial non-uniform
velocity profile. Velocity distributions, for different Re, - numbers and for sphere
diameters d, = 4.8 mm, is shown in Fig. 2. From this figure one can conclude that the
variation of Re,-number has not a significant influence on velocity profiles . The influence
of the diameter variation of the spheres forming the porous bed on the velocity profile
shape for the same flow rate, is presented in Fig. 3. With increasing the sphere diameter
the velocity ”peak” is smaller and closer (o the boundary wall at distances of about 0,1 d),.
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Figure 2. Velocity distributions for different Re;-numbers
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Figure 3. Velocity distributions for different diameter of spheres forming the bed
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There is an obvious analogy between the form of obtained profiles and the
tendency of variation (with increasing Re - number and with variation of the diameter of
spheres forming the bed) and the results in references, where the velocity profiles were
obtained by method of matched asymptotic expansions [2] or by variational method [8].

Numerical solution of energy equation gives a two-dimensional temperature
distribution that is in good agreement with the experimental results cited in reference

[6]. . ‘

Comparisons of temperature profiles obtained by prediction method with meas-
ured temperatures are shown in Figs. 4, 5 and 6. The fifty four experimental situations
have been realized and three among them, randomly chosen, are presented in the
following figures. These three presented experimental situations are characterized by the
same specific heat flux of heater for various fluid flow rates.
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Figure 6. Temperature
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The obtained results show that the non-Darcian effects have a significant
influence on the shape of velocity and temperature profiles especially in the vicinity of
the impermeable solid convective boundary surface.

The presented mathematical model and its solving procedure, the computer
program, can contribute to more correct solutions of different problems involving the
forced convection in porous bed which are important for engineering practice.

Nomenclature

a [m%s] =
a b -

F

H [m} -
K [m?]

K. [W/(mK)] -
K, [W/(mK)] -
K, [W/(mK)] -
k [W/(mK)] -
p [Pa] .
Pe -
g [W/m?] -
r [m] -
Re -
T [°C] -
Wom [m/ S] o
W, [m/S] =1
z p—

fluid thermal diffusivity
constants defined by Ergun-relation
empiric coefficients

diameter

sphere diameter

empiric coefficient

inertia coefficient

height of porous bed
permeability

effective thermal conductivity
stagnant thermal conductivity
transverse thermal dispersion conductivity
thermal conductivity

pressure

Peclet number

specific heat flux

radial direction, radius
Reynolds number
temperature

Darcy’s velocity

axial velocity

axial direction
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Greek symbols
c — porosity i — inner
u[Pass] - fluid viscosity m - averaged
p [kg/m®] - density ¢ g uter
p — particle
% — radial direction
Indexes s — solid
ul — inlet,
d — sphere diameter w - wall
eff - effective value Z - axial direction
i - fluid o — bulk of bed
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