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The paper deals with the computational aspects of the so called Anzelius

function. This special function is the fundamental one for describing the
kinetics of a fixed-bed adsorber and is widely used on the theory of
breakthrough curves not only in adsorption and ion exchange, but in the
other operations with isomorphous mathematical models as well. In-
stead of the use of graphical and tabular presentations of the numerical
values of this function (what is common practice in chemical engineer-
ing literature) the paper proposes a simple algorithm as an alternative
for its evaluation. The algorithm is very efficient and extremely accurate
for entire range of parameters of interest.

Introduction

The central problem in the design of the processes in the fixed-bed adsorption
or ion exchange is the one of establishing the dynamic response of packet column to
a step change in feed concentration, viz. the problem of predicting the breakthrough
curves. It is a well known fact that the socalled Anzelius [1] — Schumann [2] function
given by:

J(ry)+1-¢7 :j:e-élo (247 e (1)

is the fundamental one for describing the kinetics of a fixed-bed adsorber and is widely
used on the theory of breakthrough curves not only in adsorption and ion exchange, but
in other operations with isomorphous mathematical models as well. (See [3] for back-
ground of the fixed-bed operations.) The arguments x and y (dimensionless distance and
time, respectively) usually involve dimensionless groups related to column capacity
parameter, throughput parameter and separation factor. Up to date, the chemical
engineer is directed to the use of graphical and tabular presentation of this function [3,

4].
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Figure 1. Anzelius-Schumann J funct
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Figure 1 is a graph of the Anzelius-Schumann function in which we have plotted
a dense population of J(x, y) lines at constant x for various y/x so that the whole region of
practical interest is covered.

This paper deals with the computational aspects of the function (1) pointing out
that there is no need for “new solutions” such as one presented in [5], since the following
explicit and very convergent relation holds [6-8],

J(xy)—e(""Y)z y/x"lz (2J_) i e("”)ZX/y (2\/——) @)

This formula is convenient for mini-desk-top computers having a subroutine for
the modified Bessel functions of integer order. However, in order to eliminate the use of
tabular and nomographic presentations of concentration histories as well as to eliminate
the computation of Bessel functions this paper proposes a simple algorithm as an
alternative for evaluating J(x, y). The latter is based on Parl's method of calculating the
generalized Marcum Q(%/%; 2y function [9].

On the search for new solutions for
fixed-bed adsorption problem

The problem of predicting breakthrough curves from basic kinetic and equilib-
rium data has attracted much attention because of its importance not only concerning
adsorption columns but also in relation to chromatography and ion exchange. In princi-
ple, the breakthrough curve may be calculated, for any system of known kinetics, from
the solution of the differential rate equation subject to the boundary conditions imposed
by the differential fluid phase mass balance for an element of column.

Recently Liaw et al [5] proposed a "new solution” to a fixed-bed adsorption
problem considered previously by Rosen [10]. The problem is that of adsorption of a
single adsorbable species from a fluid stream passing through a fixed-bed packed with
adsorbents free of adsorbate initially. The isotherm is linear and the rate controlling step
is the combination of mass transfer resistances in both fluid and particle phases.

The literature is nowadays fed up with the "new solutions” and various analytical
and numerical methods for evaluating the kinetics of these kind of processes. Thus, it
seams that the search for new solutions expressible in term of J(x, y) function is absolutely
unnecessary. This statement may be supported by the discussions by Camp [11], Rice
[12], and Tien [13] that followed the publication of the work [5].

The general expression for the breakthrough curve for a linear isotherm and
constant diffusivity involving J(x, y) function was re ported many times in the literature.
A review of just ten solutions of this kind is presented in the Table 1.

The description of the nonlinear isothermal breakthrough behaviour of adsor-
bersreduces to the above linearized results as a special case. Thus, for example, the results
obtained for Freundlich isotherm in [2] agree, for n = 1, with the solution from [16].
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Another well known example is, as given in [4]: the reduction of Thomas' solution
for Langumir isotherm to the linearized one by putting the equilibrium constant to
be equal to one (K = 1). Linearity usually must exist to permit analytical solution for
isothermaloperation of a fixed-bed adsorbers. However, the main advantage, from
the computational standpoint, of the solutions given by Thomas [20, 22] for Langmuir
isotherm, is that they are expressible in the terms of J(x, y) function. See equations
(10.31a), (10.31b) and (10.37) in [4] for arguments of J-function in Thomas' solution.

Table 1. Some solutions for linear equilibrium
involving J(x, y) function

3 X =J(Ng, ZNg) 16-123a
Y=1-J(ZNpg, Ng) 16-123b
4 cleo = J(n, nT) 10.38
qlqo=1-J(nT, n) 10.39
5 u = J(Kx/E,6/€) 28&32
14 calco =J(s, t) 64
q4/9. = J(t s) 65
15 0 calcqo = K(sg ty) 19
16 yixg = J(ax, Bt) 21
wiwg = 1 - J(br, ax) 22
17 ylyo = J(E% %) 25
18 Cleged = I(5 1) 3
19 X=JE") . ¥ i1
20 Saturation:
cleg = 1 -J(Bx, Ay) 48
q/go = J(Ay, Bx) 49
Elution:
cleg = J(Bx, Ay) 50
q/qo = 1 —J(Ay, Bx) 51

* The notation of dependent and independent variables are those
from the corresponding reference

The properties of the J(x, y) function have been studied extensively by
Goldstein [6] and are obtainable from various texts. At this point it is worthwhile just
to notice that beyond the forms given by equations (1) and (2), the following relations
hold:
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The J(x, y) function is named as ”fundamental” by Carslaw and Jaeger [23], and
denoted as V;(x, y) by Korol'’kov [8]. Romie [24, 25] denotes J(x, y) function as Hy(x, y).
It is just the J function's different representations that made the solutions of various
authors appear different.

The simplest way to prove any of the above equations is by taking the Laplace
transform with respect to both variables and using some additional algebra. The choice of
one or the other relation is governed by purely computational aspects, i.e. the convergence
criteria, which we will not discuss here. We just note that the preference of some formula
strongly depends on the relative magnitude of the argumentsx andy, and for some asymptotic
relations the reader should consult the papers by Goldstein [6] and Klinkenberg [7].

Evaluation of J(x, y) function on the pocket
calculators and home computers

The method proposed here does not employ a power series expansion or a
numerical integration for the evaluation of J(x, y) function. Instead, the expansion in
modified Bessel functions, as given by equation (2), is used. The latter is evaluated using
a forward recursion derived from the backward recursion for the Bessel functions as
proposed by Parl [9] for the Marcum function which is related to the noncentral
chi-squared distribution with two degrees of freedom.

Calculation of the Anzelius-Schumann function J(x, y) should be performed
according to the first expression in (2) wheny < xand according to the second expression
in (2) whenx <y. This provides a fast convergence. Rearranging the exponential factor

e~ () — o~ (r=Vy) o 2Vw
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Figure 3. Main program flow chart
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one can rewrite equations (2) in the forms

2 o0
Ll s e_(‘/;_‘/;) >(y/ x)”lze_z‘/;I,, (2,/;), fory <x %)
n=0
and
2 n/2
J(x,y)=1- o W) >(x/y) V7], (2\/;), fory>x (5)
n=1

that lead to a straightforward application of the Parl's algorithm [9]. The reader should
consult reference [9] for details of the algorithm development. The flow-chart of the
algorithm is given in Fig. 2. It is easily used for either y < x or x <y and does not have
the dynamic range problem. Further, it is also extremely accurate since the relative error
isbounded by sé +,/n,/xy ) where the accuracy is chosen so that & = 1071°. The algorithm
is also very fast and easy to use on the modest calculators.
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