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This paper shows how the transient response of parallel heat exchanger
with finite wall capacitance may be calculated by analytical method.
Making usual idealizations for analysis of dynamic behavior of heat
exchanger, the model is based on three local energy balance equations
which are solved by using the Laplace transform method for step change
of the primary fluid inlet temperature. The solution are found in the case
of constant initial conditions and expressed in explicit analytical form
in terms of the number of transfer units, heat capacity ratios, heat
transfer resistance and flow capacitance ratios. Present solutions are
valid in case where fluid velocities are different or equal and finite or
infinite. The solutions can be very suitable for mathematical modeling
systems containing such types of heat exchangers.

Introduction

Two-fluid direct-transfer heat exchangers are used extensively in nearly every
industrial process such as power plants, gas turbines, air-conditioning systems and a lot
of chemical plants. Any change, intentional or accidental, in the steady-state or in starting
a system, causes a perturbation in the system that can have significant consequences. In
all these cases, it is important to know dynamic behavior of the heat exchanger in order
to select the most suitable design, control, and operation. The traditional design based
on steady-state data has become inadequate, and attention has been paid to the under-
standing and evaluation of the dynamic behavior of heat exchangers.

As there is no enough space for reviewing already published papers, only a list
of relevant references is given in this paper. However, it is important to stress that the
open literature has not provided solutions for this type of problem.

This paper presents solutions to the energy equations governing convective heat
transfer between a heat exchanger core, which is initially at a constant temperature, and
a steady flow of fluids entering the exchanger at constant mass velocities. The tempera-
tures of fluids and the core temperature are initially equal but, at zero time, the primary
fluid is changed for the unit step increase in the inlet temperature. The presented model
is valid for finite propagation speeds and finite wall capacitance. Availability of such
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solutions gives the engineer and the designer much more insight into the nature of
transient heat transfer in parallel heat exchangers.

Mathematical formulation

On the basis of assumptions given in the Abstract and applying energy equations
to both fluids and the wall, one can obtain three simultaneous partial equations in the
coordinate system as shown in Fig. 1.

A

Figure 1. Schematic description of
parallel heat exchanger

The space and time independent variables, X and ¢, range from 0 to the heat
exchanger length L, and from 0 to 4, respectively. Other symbols are listed in Nomencla-
ture.

All quantities referring to the weaker fluid (W) flowing in the X direction are
denoted with subscript 1 and those referring to the stronger fluid (W,,,,), flowing in the
same direction, with subscript 2 (Fig. 1).

In order to define dimensionless temperatures, it is appropriate to choose a
reference temperature 7 and characteristic temperature difference AT, so that:

0;(X,t)=

Tdedls O i=12,w (1)
AR

Introducing dimensionless distance and dimensionless time:

i %NTU; z= ;’;NTU @)

and applying the relations given by:

:ML Q):_u_fl_ (OS(D 51) (3)

NTU :
(hA), +(hA), W W,
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* Cwa : Kl e (hA)l : I<2 - 1—K1 (4)
(hA); +(hA), (hA); +(hA),
C,:L—WL—l—; el [ 1,2 )
cwM,, KU; piF;

the set of energy equations can be written in the following dimensionless form:

00
— +9w =K191+K292 (6)

oz

00 00
Cileg —iB.p .0 i
1 bz 2 B w 1 ()
06, K

C,—*+—L1-9,-0 8
2 o o w 2 ( )

To define a partial differential problem completely, inlet and initial conditions
have to be prescribed:

\ 0 for z<0
\ 81(0,z)={1 for z>0

0,(0,2)=0 ©)
0,(x,0)=0,,(x,0)=0, (x,0)=0

These conditions are assuming that only fluid 1 inlet condition is perturbed. Step
change in inlet temperature of fluid 1 is certainly most important from a physical point
of view. However, because of the linearity of Egs. (6), (7), and (8) and following similar
procedure, as it can be seen in this paper, one can find transient behavior for perturbing
other inlet and initial conditions. A general solution of this problem is developed in the
following section.

General solution

Since equations (6), (7), and (8) are linear in 0,(x, z), O(x, z), and 6,(x, z), they
can be solved by using the Laplace transform. Taking a two-fold Laplace transform of
the mentioned equations with respect to x and z with complex parameters s and p,
respectively, and using the inlet and initial conditions (Egs. 9), result in a simple set of
algebraic equations. The solution of this algebraic system reads as follows:
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K;s+Cip+1 &-S+C1p+1

®

g (1)

Kys+Cip+1 P(Kys+Cip+1)
By =i 8 (12)

&S+C2p+1
(0]

Using some simple mathematical transformations and the well known relation:

1 N 1
= i
(s+s; )1’1+1(s+s )”’*1] -0 b ( )(sz -5 (54, Y-l
P p+i 1 i
-1 ( ) . . 13
W i=0 (83 =5 ) (s 4.5,y o

this algebraic system (Eqgs. 10, 11, and 12) can be expressed in the following form, which
is more convenient for developing the inverse Laplace transformation (using necessary
condition py, p, = 1, 2, 3,...). But, for brevity, only the final result for embed 0,, will be
given hereinafter.

- ) 1 K
e 3 = Kn+1 2 +
)T p(p+1)"! (Kyps+C p+1)"

+§1mzo( ]{Kl ak; ,E:o n-m-1 (aKz)f

1 K,
. - - +
P(p+1)"1(p+b)""™ (Kys +Cyp+1)"*

e 0K (Klj s l[mﬂ)(w )
el a ak, =0 \ m J\akK;
=
1 ®

i 1 n+l +b m+n+1 y n-m—i
p(p+1)"" (p+Db) ( 1S+C2p+l)
(0]

Ms

(14)
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where a = oC, /K; - C1 /Ky and b = (o/K; - 1/Ky)/a.

Analogous evaluations hold for the functions 6; and 92

From the techniques of Laplace transformation and using the Laplace trans-
forms of special functions F,(x, ¢) and H,, ,,x (, ¢, d), defined in the Appendix, one can
obtain the inverse Laplace transformation of equation (14), and similar equations for
0, and 0, which are not given in this paper. Using this procedure, the transient tempera-
ture distributions of both fluids and the wall for the parallel flow heat exchanger are as
follow:

6 (x z)_ Z K"+1Fn+1(x1,1)|:1— i_OFmH(Zl’l)j!'*'

© n-1(n m+1(ﬂK_2jn_m m (n—m+j—1]
+n§1 %o[mj{Kl aK, EO e
(-1’
(@K,

0K T ( &y ]’"n—m—l(mﬂ)
) a ak, Eb m

® !
(;I_{Tj Fyom-i(%2 D) H i mein11(2211 —b)} (15)

Fm—j+1 (xl ’I)Hn+1,n—m+j,l (zl ’1’1 7} b) i

) o n-1
01(x,2) = Fy(x, 1k (21) + ;OKI'HIF (% ,1)[1 2 Fm+1(21,1)]+ z X [ )

n=1m=0

n-m . i
m+1 0k, m+1[n Slilasi] 1] (_1)1 —b).
K (aKlj j§0 =1 (aKz)ij—j+2(xl ’I)Hn+l,n—-m+j,l (Zl ’1’1 b) +
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m
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j(;}{—]) Fn—m—i(xZ ’I)Hn+1,m+i+2,l (22 ,1,1 - b)]

(16)
0, (x, Z)“ a n°°1 m_o[:l)

n-m : ;
K, m(n-m+j\) (-1)
|:K (aKl) ]E‘O( n—m ) (aKZ)j Fm—j+1(x1’1)Hn+1,n—m+j,1(zl’1’1_b)+
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s E By mica (62, H g maing (22511 -0} | (17)
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where z; = z — Cx/K5, 25 = z — C/Ky, x1 = x/Ky, x5 = ax/K;.

Equations (15), (16), and (17) express analytically the transient temperature
distributions for the parallel flow heat exchanger with finite wall capacitance, according
to the finite propagation speed of disturbances in the exchanger.

Generally speaking, there are three different cases:

(1) U1>U2(C1< Cz)
QU =U, (Ci=Cy)
(3) U1<U2 (C1>C2)

The case U;, Uy — = is a special case presented herein and discussed in detail
in [10], while the cases U; > 0 and U, = 0, or U; = « and U, = 0, etc., are not so
interesting for practical purposes, although they can be analyzed using the given
solutions.

It is important to notice that, in some special cases, validity of making
assumptions must be carefully tested. More or less, it must be done always if one
wishes to use certain theoretical solutions for practical purposes. For example, in
the case where U, > 0, U, = 0 (secondary fluid doesn't flow) or U, ~ 0 (secondary
fluid flows very slowly) and o > 0, flow passage of the secondary fluid has to be
very high and, because of that, heat conduction through the fluid and in the
direction perpendicular to the heat exchange surface can be significant. However,
an inquiry into the practical application of this theory will not be made in this
paper.

In equation (10), two special cases can be easily noticed:

A, Ci=CandK /o =K,orK; = o/(1 + o)
I3}, o=0

Case A:

The first of the mentioned conditions means that propagation speeds of both
fluids are equal. The temperatures in front of disturbances must be equal to zero in
accordance with initial and inlet conditions. The second condition means that the
number of transfer units of both fluids is equal, i.e. NTU; = NTU,. This can be easily
proved by substituting expressions for o, K; , and K, (Eqgs. 3 and 4) in the condition
K2 = Kl/(l).

IfKys + Cp + 1 =Ks/@ + Cyp + 1, equation (10) is transformed to:

e 2 18
w 1n=0 p(p+1)n+l (K2s+clp+1)n+1 ( )

and from equations (11) and (12), the following temperatures (’)Vl and 6; can be obtained:
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o
1772 p(Kys+Cip+1)
) 1 K,

8, =K 19
8 %Eo el s, prIy e

The inverse two-fold Laplace transform of the functions resulting from equa-
tions (18) and (19), give explicit analytical expressions for temperature distributions:

0u(52)=Ki|1- & )+ £ o) 20)
0, (5.2) = Fy(xa. Lk (21) 405 (5, 2) ey
0,(x,2) = K, [1 —Fi(x,1)- go Fpyp(x1,1)+ mz=0 Fra(z ,1)} (22)

Case B (applicable to any exchanger configuration):

In this case ® = 0 and, therefore, 8,(x, z) = 0, which inevitably results in the
reduced equation (10). After some mathematical manipulations, this equation can be
transformed into:

o~ © 1 KIH-lK
0, = o n+l ; ; n+l (23)
n=0 p(p+1)"" (K5 +Cyp+1)
Finally, the inverse two-fold Laplace transform of equation (23) gives:
0 1 n
0,(x,2)= 2 K{"Fra(8)1- X Fps(211) (24)
n= m=

From equation (11), using equation (23), the temperature distribution of fluid
1 can be found.

0, (x,2) = F, (%, 1) (2,) + g KR o (x ,l)[l— i_Oan (21,1)] (25)

It should be emphasized that the solutions of both special cases (A and B) can
be deduced from the solutions given by Romie [7], but this will not be shown in this paper.
Outlet temperatures of both fluids can be found by puttingx = NTU.
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Calculation results

The purpose of this paper was to provide an exact analytical solution by which
performances of the parallel flow heat exchanger can be evaluated and compared. Many
parameters are involved in the temperature distributions of both fluids and the wall and,
therefore, it is not possible to present quantitative influences of all these parameters in
this paper. However, there is enough space to give a particular result showing the main
characteristics of the solutions.

The space temperature distributions of both fluids and the wall for various
times and outlet fluid temperatures versus time will be presented herein assuming
that NTU = 1, 0 = 0.5, K; = 0.25, C; = 4, and C, = 0.5. The illustrative example to
this option is reported in Fig. 2. The temperature distributions of both fluids and the
wall have been plotted versus dimensionless heat exchanger length forz = 1, 3, 5 and
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Figure 2. Temperature distribution of both fluids and the wall versus dimensionless length x
for various dimensionless times z (NTU = 1, ® = 0.5, Ky = 0.25, C; = 4, and C; = 0.5)
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10.Itisvery interestingin this example that the temperature of fluid 1 hasbeen changed
in front of the wave front (Fig. 2a, 2b, and 2c). That means that fluid 1 and the wall are
heated by fluid 2 instead of vice versa. In front of the fluid 2 wave front, all temperatures
are equal to zero (initial conditions). Of course, at the point of wave front 1, fluid 1
temperature is changed discontinously and has two values as follows from the step
change of the inlet fluid 1. For greater values of z (z = 10) (Fig. 2d), distributions of
both fluids and the wall are very similar to the steady-state temperature distribution
and that is quite obvious.

The outlet temperatures (6,” and 6,") of both fluids are presented in Fig. 3
for the same case. It is easy to see that fluid 1 is heated before the wave front comes
to the outlet of heat exchanger becouse it gets energy from fluid 2 previously heated
by fluid 1. In Fig. 3. one can find the asymtotic values for z — ~in the step response
reproduction.

1-0_ T S S e g

09— =

e NTU =1 S

L o =05 o
(2]
&J 0.7 — K1=025 —
=) = = =
= 1
é 0.6:— Cz=0-5 ——
o
= 05— —
w e =
=
E 04— ==
=3 = =l
'5 0.3 }— =4
@ .

02—

OMit=

P

0 1

TIME

Figure 3. Outlet temperatures of both fluids versus
dimensionless time z

Concluding remarks

A method providing exact analytical solutions to the transient response of
parallel heat exchanger with finite wall capacitance has been presented. Solutions are
valid in the case where fluid velocities are different or equal. This solution procedure
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provides necessary basis for the study of parameter estimation, model discrimination,
and control of parallel heat exchangers.

Comparisons for the transient cases with different fluid velocities are not
possible because there are no available data in literature. However, results for equal
velocities can be compared with results given by Romie [5] and results for infinite
velocities given by Romie [5] and Gvozdenac [8]. These tests were conducted and proved
that the solutions for the above mentioned particular cases are correct.

Examination of these solutions reveals that they may be used effectively in
practice for computer-aided design, control, and operation procedures.

Nomenclature

A, Az [m?] — total heat transfer area on side 1 and 2, respectively
¢l - — parameter*

b — parameter*

C1,C — parameters, equation (5)

¢p [J/(kgK)] - specific heat at constant pressure

cw [J/(kgK)] - specific heat of core material

Fy, F> [m] — cross-section area of flow passage 1 and 2, respectively
Fy — special function defined in the Appendix

Huymu — special function defined in the Appendix
h[W/(Km)] - heat transfer coefficient between fluid and the wall
Lym — special function defined in the Appendix

K, K, — parameters, equations (4)

L [m] — heat exchanger length

M, [kg] — mass of exchanger core

i [kg/s] — mass flow rate

NI — number of transfer units, equation (3)

S — Laplace transform variable

T [K] — temperature

t[s] — time

i — parameter, equation (4)

U [m/s] — fluid velocity

WI[W/K] — thermal capacity rate*

X [m] — distance from fluid 1 and 2 entrances

X'z - dimensionless independent variables, equation (2)
0 - dimensionless temperature, equation (1)

w — thermal capacity rate ratio, equation (3)

K — unit step function

Subscript

1 — fluid 1
2 — fluid 2
w — wall
Ljknm - integers
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Superscripts

"

— at the outlet
- two-fold Laplace transform

Gy /K, - Cy /K,

a=mw
b = (o/K,-1/K; )/a
W =mc

p

Appendix

The functions F,,(x, ¢), I, m (%, ¢, d) and H,, ,,, k(x, ¢, @) and their Laplace transforms

are given as described below (x 20,-~ <c¢, d<+ =, andn, m, k = 1,2,3,...). Forx <0 all
these functions are equal to zero.

n-1 1
poo o (A1)

%
Fn(x,c)=———(n_l)!e Gro)

I,,(xcd) §(m+i'1)d"F (%,0) & 1 A2
n X, C, = | " X, C .

et i=0 I ol (s+¢)"(s+c-d)" 50

Hy o (66,d) = Sd' T meis (5,6,6) L (A3)
n,m,k\*> &> o n+m+i,k \*> %> Sk(S+C)n(S+C"d)m i

References

(1
(2]
B3]
[4]
(5]
(6]

(7]

Profos, P., Die Behandlung von Regelproblemen vermittels des Frequenzganges des Regelkreises,
Dissertation, Ziirich, 1943

Takahashi, Y., Automatic Control of Heat Exchanger, Bull. JISME, 54 (1951), pp. 426431

Kays, W. M., London, A. L., Compact Heat Exchangers, 3rd (Ed. McGraw-Hill), New York, 1984
Liapis, A. I., McAvoy, T. J., Transient Solutions for a Class of Hyperbolic Counter-Current Distributed
Heat and Mass Transfer Systems, Trans. IChemE, 59 (1981), pp. 89-94

Li, Ch. H., Exact Transient Solutions of Parallel-Current Transfer Processes, ASME Journal of Heat
Transfer, 108 (1986), pp. 365-369

Romie, F. E., Transient Response of Counterflow Heat Exchanger, ASME Journal of Heat Transfer,
106(1985), pp. 620-626

Romie, F. E., Transient Response of the Parallel-Flow Heat Exchanger, ASME Journal of Heat Transfer,
107(1986), pp. 727-730

35



THERMAL SCIENCE: Vol.1 (1997), No. 1, pp. 43-54

[8] Gvozdenac, D. D., Analytical Solution of Transient Response of Gas-to-Gas Parallel and Counterflow
Heat Exchangers, ASME Journal of Heat Transfer, 109 (1987), pp. 848-855

[91 Romie, F. E,, Transient Response of Gas-to-Gas Crossflow Heat Exchangers with Neither Gas Mixed,
ASME Journal of Heat Transfer, 105 (1983), pp. 563-570

[10] Gvozdenac, D. D., Analytical Solution of the Transient Response of Gas-to-Gas Crossflow Heat
Exchanger with Both Fluids Unmixed, ASME Journal of Heat Transfer, 108 (1986), pp. 722-727

[11] Spiga, G., Spiga, M., Two-Dimensional Transient Solutions for Crossflow Heat Exchangers with Neither
Gas Mixed, ASME Journal of Heat Transfer, 109 (1987), pp. 281-286

[12] Spiga, M., Spiga, G., Transient Temperature Fields in Crossflow Heat Exchangers with Finite Wall
Capacitance, ASME Journal of Heat Transfer, 110 (1988), pp. 49-53

Author addreess:

Prof. Dr. D. Gvozdenac

Institute of Fluid, Thermal and Chemical Engineering

Mechanical Engineering Department, Faculty of Technical Sciences
University of Novi Sad

6, Trg Dositeja Obradovica

21121 Novi Sad, Yugoslavia

54



	g.045
	g.046
	g.047
	g.048
	g.049
	g.050
	g.051
	g.052
	g.053
	g.054
	g.055
	g.056

