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In this paper, the fully-developed temperature profile and corresponding Nusselt 
value is determined analytically for a gaseous flow in a microtube with a thermal 
boundary condition of constant wall heat flux. The flow assumed to be laminar, 
and hydrodynamically and thermally fully developed. The fluid is assumed to be 
constant property and incompressible. The effect of rarefaction, viscous 
dissipation and axial conduction, which are important at the microscale, are 
included in the analysis. Second-order slip model is used for the slip-flow and 
temperature jump boundary conditions for the implementation of the rarefaction 
effect. Closed form solutions for the temperature field and the fully-developed 
Nusselt number is derived as a function of Knudsen number, Brinkman number 
and Peclet number.   
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Introduction 

The recent developments in micro- and nano-fabrication techniques have enabled 

the usage of fluidic and thermal systems with micrometer dimensions in many biomedical and 

engineering applications such as micro-reactors, micro-heat exchangers, cell reactors etc. 

Therefore, the fundamental understanding of the transport phenomena at microscale is crucial 

to design, optimize and utilize improved micron-sized systems. Analysis of heat transfer 

inside a microtube is one of the fundamental problems to understand the fluid physics at 

microscale. There are several issues that need to be considered at microscale. 

The ratio of the mean free path to the characteristic length, a dimensionless quantity, 

is known as Knudsen number (Kn = /L). As Knudsen number increases, fluid modeling is 

moving from continuum models to molecular models, and non-continuum effects needs to be 

considered. The regime where the Kn number is between 0.001 and 0.1 is known as slip-flow 

regime [1]. The flow of a gas with a typical mean free path of approximately 100 nm at 

standard condition inside a microchannel with a dimension of 10 micron would result in a gas 
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flow in a slip-flow regime. Although the equations of continuum mechanics (i. e. Navier-

Stoke’s equations) are valid in this regime the boundary conditions needs to be modified to 

take into account the non-continuum effects (i.e. rarefaction effects). 

The general form of the boundary conditions for velocity and temperature can 

be written as follows: 
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where n and t stand for normal and tangential directions, respectively. First terms of the eqs. 

(1) and (2) are known as first-order boundary conditions, and the second terms are known as 

second-order boundary conditions. As the modeling moves to the edge of the slip flow regime 

(i. e. Kn approaches 0.1), the inclusion of the second-order terms improves the accuracy of the 

solution. The last term of the eq. (1) is known as thermal creep, and is also in the order of 2
 

[1]. However for the ease of the solution this term is neglected in this study. 

There are two common models for second-order boundary conditions, which were 

suggested by Deissler [2] and Karniadakis et al. [3]. In this study these two models are 

implemented, and the corresponding coefficients for these two models are tabulated in tab. 1 [1]. 

Table 1. List of the coefficients used in eqs. (1) and (2) 

The effect of the 

viscous dissipation, which 

is characterized by Brink-

man number, and the axial 

conduction, which is 

characterized by Peclet 

number, are also important 

at microscale [4]. The 

fluid flow [5, 6] and heat transfer [4, 7-17] inside a micro-conduit was analyzed for different 

geometries such as circular tube [4, 7, 9, 11, 14-16], parallel plate [10, 12, 14], rectangular 

channel [17], annular channel [13] using first-order [4, 7, 10-15] and second-order models 

[16, 17] both analytically [7, 10-14, 16] and numerically [9, 17]. Some studies included the 

viscous dissipation [4, 9-12, 14, 15, 17] and the axial conduction [10, 14, 15, 17].   

In this study, heat transfer for a fluid flow in a microtube with a constant wall heat 

flux is analyzed including viscous dissipation, axial conduction and rarefaction effects. 

Second-order slip models are implemented for the rarefaction effects. Closed form solutions 

are obtained for fully-developed temperature profile and the Nusselt number. 

Analysis 

The steady-state, hydrodynamically-developed flow with a constant temperature, Ti, 

flows into the microtube with the constant heat flux at the wall. Introducing the following 

dimensionless parameters. 
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The governing energy equation including the axial conduction and the viscous 

dissipation term, and the corresponding boundary condition can be written as: 
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where 



u  is the dimensionless fully-developed velocity profile for the slip-flow regime. By 

solving the momentum equation together with the slip-velocity boundary condition, 



u  can be 

determined as: 
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The fully-developed temperature profile has the following functional form [18]: 
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

 (7) 

where A is constant that needs to determined. Substituting eq. (7) into eq. (4), and integrating 

once in -direction results in: 
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Using the boundary condition at the wall, A can be determined as: 
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Integrating eq. (8) in -direction,  can be determined as: 
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where B and C are arbitrary constants. Using the boundary condition at the microtube center, 

constant B can be determined as zero. In order to get constant C, eq. (4) needs to integrated in 

-direction from 0 to 1, and in -direction. These integration results in the following equation: 
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constant C can be determined by substituting eq. (7) into eq. (11): 
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Fully-developed temperature can be obtained by substituting eq. (10) into eq. (7) as: 
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where A and C are given in eqs. (9) and (12). When Kn = Br = 0, the solution recovers the 

macrochannel result [19] as: 
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Introducing dimensionless quantities, fully-developed Nusselt number can be written as: 
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where mean is the dimensionless mean temperature which is defined as: 
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and wall is the wall temperature and can be determined by the implementation of the 

temperature-jump boundary condition, eq. (2) as: 
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Substituting eqs. (13), (17) into eq. (15), Nu can be determined as: 
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For a macrochannel flow (i. e. Kn = Br = 0,  = 1), the solution recovers well-

known result of 48/11 [18, pp. 389-390]. 

Results and discussion 

The fully-developed temperature profile and the fully-developed Nu is determined 

by solving the energy equation with the appropriate boundary conditions. Second-order 

boundary conditions are implemented to include the rarefaction effects. The viscous 

dissipation and the axial conduction are also included in the analysis. Coefficient b1 is taken 

as 1.667 and  is taken as 1.4 in the calculation of coefficient b2, which are typical values for 

air, which is the working fluid in many engineering problems. As seen from eq. (13) fully 

developed temperature profile is function of Kn, Br, Pe and , however, the fully developed 

Nu is function of only Kn and Br, and does not depend on Pe which means Pe number only 

effects the local Nu in the thermal entrance region. 
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Table 2. Fully-developed Nu for different Kn and Br number values 

 Br = 0 Br = 0.1 Br = –0.1 

Kn 
1st order 
model 

2nd order 
model [2] 

2nd order 
model [3] 

2nd order 
model [2] 

2nd order 
model [3] 

2nd order 
model [2] 

2nd order 
model [3] 

0.00 4.36 4.36 4.36 3.04 3.04 7.74 7.74 

0.02 4.07 4.09 4.07 3.27 3.20 5.47 5.59 

0.04 3.75 3.80 3.74 3.38 3.16 4.32 4.59 

0.06 3.44 3.50 3.43 3.42 3.02 3.60 3.97 

0.08 3.16 3.23 3.16 3.39 2.85 3.08 3.53 

0.10 2.90 2.97 2.92 3.31 2.68 2.69 3.20 

0.12 2.68 2.73 2.71 3.22 2.52 2.37 2.92 

 
The fully-developed values for different Kn and Br numbers are tabulated in tab. 2. 

The fully-developed Nu for different Kn and Br numbers is also shown in fig 1. The results 

for first-order model are also included in the fig. 1. As seen from the figure, the second-order 

model proposed by Karniadakis et al. [3] gives close results to first-order model. However, 

the second-order model proposed by Deissler [2] gives appreciably deviation from first-order 

model. For both models deviation from first-order model increases as the rarefaction increases 

(i. e. increasing Kn). 

 

 

Figure 1. Variation of fully developed Nu 

with Kn for different Br 
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Br number has an appreciable effect on Nu value. Positive Br means that the fluid is 

being heated and negative Br means that the fluid is being cooled. For Br < 0, second-order 

model of [2] underestimate the Nu than that of fist-order model, and second-order model of 

[3] overestimate the Nu than that of fist-order model. For Br > 0, the situation is vice-versa. 

In this study only the fully-developed region is considered. Since the length-over-

diameter ratio is high for microchannels, in the majority of the channel the flow will be fully-

developed. However, in order to see the complete picture, thermally developing region can be 

analyzed. In that analysis, the superposition method can be utilized and the fully-developed 

temperature profile can be subtracted from the overall solution and the remaining 

homogenous equation can be solved by using eigen-function expansion [14]. In the analysis, 

thermal creep term in the slip-flow boundary condition, eq. (1) is neglected. Inclusion of the 

thermal creep term in the analysis will be the future research direction. 

Nomenclature 

Br –  Brinkman number (= um
2/qwR), [–] 

D –  tube diameter [m] 
F –  accommodation factor 
h –  convective heat transfer coefficient [Wm–2K–1] 
k –  thermal conductivity [Wm–2K–1] 
Kn –  Knudsen number (= /L), [–] 
L –  characteristic length [m] 
Nu –  Nusselt number (= hD/k), [–] 
Pe –  Peclet number (= RePr), [–] 
Pr –  Prandtl number (= /), [–] 
q –  heat flux [Wm–2]  
r –  radial coordinate [m] 
R –  tube radius [m] 
Re –  Reynolds number (= umD/), [–] 
T –  fluid temperature [K] 
u –  velocity in axial direction [ms–1] 
u  –  dimensionless velocity 
x –  axial coordinate [m] 

 

Greek symbols 

 –  thermal diffusivity [m2s–1] 
 –  parameter defined in eq. (9) 
 –  dimensionless temperature 
 –  specific heat ratio 
 –  dimensionless radial coordinate 
 –  mean free path [m] 
 –  dynamic viscosity [kgm–1s–1] 
 –  kinematic viscosity [m2s–1] 
 –  dimensionless temperature 
 –  dimensionless axial coordinate 

Subscripts 

i –  inlet 
m –  mean 
T –  thermal 
w –  wall 
 –  fully-developed 
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