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In this paper, an application of the Picard's iterative method for finding the 
solution of two phase Stefan problem is presented. In the proposed method an 
iterative connection is formulated, which allows to determine the temperature 
distribution in considered domain. Another unknown function, describing 
position of the moving interface, is approximated with the aid of linear 
combination of some base functions. Coefficients of this combination are 
determined by minimizing a properly constructed functional. 
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Introduction 

In this paper, we consider the two-phase Stefan problem which consists in 

determining the temperature distribution in the given domain and the function describing 

position of the moving interface (the freezing front) [1]. Stefan problem is a mathematical 

model of thermal processes during which the change of phase takes place. The examples of 

such kind of processes can be solidification of pure metals, melting of ice, freezing of water, 

deep freezing of foodstuffs and so on. 

In some simple cases of the Stefan problem there are chances for finding the 

analytical solution [2], but in most of cases the approximated methods must be applied [3,4]. 

In paper [5], the authors have applied the Adomian decomposition method, combined with 

some minimization procedure, for finding the approximate solution of one-phase Stefan 

problem. Application of the variational iteration method [6-9] for calculating the approximate 

solution of direct and inverse Stefan problem is considered in paper [10]. Moreover, in papers 

[11, 12] some new approach for solving the one-phase Stefan problem is presented. In this 

approach, the considered problem is at first transformed for the domain of unit square and 

after that, such transformed problem is solved by using the variational iteration method. 

Another applications of the variational iteration method for solving problems connected with 

the heat conductivity are presented in papers [13, 14]. 
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In the current paper, we propose to apply the Picard's iterative method for solving 

the two-phase Stefan problem. The Picard's iterative method [15] consists in formulating the 

iterative procedure, which enables to determine form of the unknown function, describing the 

temperature distribution in the given domain, on the ground of the equation and initial 

condition which should be satisfied. Another unknown function, describing position of the 

moving interface, is approximated in the form of linear combination of some base functions. 

Coefficients of this linear combination are calculated in the course of minimizing the properly 

constructed functional. An example illustrating the accuracy of the obtained approximate 

solution (compared with the known analytical solution of the problem) and speed of 

convergence of the iterative procedure is also shown. Application of the Picard's iterative 

method for the solution of one-phase Stefan problem is presented in paper [16]. 

Two-phase Stefan problem 

The two-phase Stefan problem [1] consists in finding position of the moving 

interface, described by means of function x(t), and determining the functions u(x,t) and v(x,t) 
defined in domains D1 and D2 (see fig. 1), respectively, which fulfill the heat conduction 

equations: 
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where ap is the thermal diffusivity in liquid phase (p = 1) and solid phase (p = 2), 

respectively, u and v denote the temperature in liquid phase and solid phase, while t and x 

refer to the time and spatial location, respectively. 

On boundaries G1 and G2 functions u and v 

fulfill the initial conditions: 
 

             1 1( ,0) ( ) on ,u x x                       (3) 

             2 2( ,0) ( ) on ,v x x                      (4) 
 

on boundaries G3 and G4 they satisfy the 

Dirichlet boundary conditions: 
 

                  3( , ) ( ) on ,u x t t                   (5) 

 

                   4( , ) ( ) on ,v x t t                   (6) 
 

and finally, on the moving interface Gg they 

fulfill the condition of temperature continuity 

and the Stefan condition: 
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Figure 1. Domain of the two-phase problem 
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where kp denotes the thermal conductivity in liquid phase (p = 1) and solid phase (p = 2) 

respectively, u
*
 – the melting-point temperature, L denotes the latent heat of fusion per unit 

volume, and x(t), – the function describing position of the moving interface Gg. 

In the discussed Picard's method, we transform the heat conduction eqs. (1) and (2) 

into the following integral form: 
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from which we receive two iterative formulas: 
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for k = 1,2,…, where u0(x,t) and v0(x,t) denote the initial approximations of the unknown 

functions u(x,t) and v(x,t). The initial approximations are introduced in such way that they 

satisfy the initial conditions (3) or (4) and the boundary conditions (5) or (6), respectively: 
 

                                             0 1( , ) e [ ( ) (0)] ( ),xu x t t x                                                   (13) 

 
                                            0 2( , ) e [ ( ) (0)] ( )d xv x t t x                                                  (14) 

 

In this way we receive the sequences 0{ }k ku   and 0{ }k kv  , which are convergent 

(under the proper assumptions – see [15]) to the exact solutions of eqs. (1) and (2). The 

sufficient conditions for convergence of the Picard's iterative method are formulated in paper 

[15]. However, checking whether or not the given equation satisfies those conditions is 

difficult in many cases (for example in case of problem considered in the present paper). That 

is why the problem of formulating (and proving) the convergence conditions, sufficient and 

necessary, which would be easy to verify for any given equation is still open. 

The function x(t), describing position of the moving interface, is defined in the form 

of linear combination: 
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where the coefficients ip R  and the base functions yi(t) are linearly independent. For 

determining the unknown coefficients pi we use the following functional derived with the aid 

of the condition of temperature continuity (7) and the Stefan condition (8): 
 

 



Witula, R., et al.: Solution of the Two-Phase Stefan Problem by Using the … 
S24  THERMAL SCIENCE, Year 2011, Vol. 15, Suppl. 1, pp. S21-S26 
 

 

                     

   
2 2

1

0 0
2

2 1

( )0 ( )

( , , ) ( ( ), ) d ( ( ), ) d

( , ) ( , ) d ( )
d

d

t t

m n n

t

n n

x t x t

J p p u t t u t v t t u t

v x t u x t t
L t

x x t 

 


 

 



 

 

   

 
    

  
 

 



             (16) 

Example 

Theoretical consideration introduced in the previous section will be now illustrated 

with example, in which the calculated approximate solution will be compared with the known 

exact solution. In the presented calculations, as the base functions of linear combination (15) 

we will use the monomials: 
 

1( ) , 1, ,i
i t t i m    (17) 

 
 
It is assumed in this example that: d = 3, s = 1.5, a1 = 2.5, a2 = 1.25, k1 = 6, k2 = 

= 2, L = 0.8, u* = 1. The initial conditions (3) and (4) are determined by the functions: 
 

0.2 0.3
1( ) e xx    (18) 

0.4 0.6
2 ( ) e xx    (19) 

 
whereas the Dirichlet boundary conditions (5) and (6) are described by the functions: 

 
0.1 0.3( ) e tt   (20) 

0.2 0.6( ) e tt   (21) 
 
Exact solution of the considered two-phase Stefan problem takes the form: 
 

0.2 0.1 0.3( , ) e x tu x t     (22) 

0.4 0.2 0.6( , ) e x tv x t     (23) 

( ) 0.5 1.5t t    (24) 

As it was announced, the initial approximations are get in the form of functions 

which satisfy the given initial and boundary conditions (see (13) and (14)): 
 

0.1 0.3 0.3 0.2 0.3
0 ( , ) e e e ,t x x xu x t        (25) 

0.2 2.4 0.6 0.4 2.4
0 ( , ) e e e .t x x xv x t        (26) 

 
After the proper calculations we derive the following sequences { }n n Nu   and 

{ }n n Nv   of approximated functions describing  distributions of temperature (n ≥ 1): 
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The above sequences are convergent to the exact solution: 
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Function describing position of the moving interface is defined as the linear 

combination (15) of base functions (17) with coefficients determined in the course of 

minimizing the functional (16). In tab. 1 there are compiled the errors of approximated 

solution for n = 2, 3, 4 and m = 2. 

Figure 2 presents the errors with which 

the approximated solution (n = 6, m = 2) 

reconstructs the exact position of the 

moving interface and errors with which it 

fulfills the Stefan condition (8). The other 

conditions, (5)-(7), are satisfied with the 

comparably small errors, whereas the initial 

conditions are satisfied exactly. Presented 

results show that after only several 

iterations we can receive the approximated 

solution with the small error. 

 

 
Figure 2. Error in the reconstructed position of the moving interface (a) and error of satisfying the 
Stefan condition by the approximated solution (b) 

Conclusions 

The paper presents application of the Picard's iterative method for finding the 

approximated solution of the two-phase Stefan problem. The proposed approach consists in 

determining the temperature distribution with the aid of some iterative formulas and 

calculating the coefficients of the linear combination of some base functions, approximating 

position of the moving interface, in course of minimizing the properly constructed functional. 

Presented example shows that the sequence of successive approximations, which we receive 

in this method, is convergent to the exact solution, if it exists. In [15] there are formulated the 

sufficient conditions of this convergence, however, they are difficult to check in most of cases 

(also for example considered in the current paper). That is why the problem of formulating 

and proving the convergence conditions of the Picard's method, easy to verify for any 

equation, is still open. 

Table 1. Values of errors in the reconstructed  
position of the moving interface and 

temperature distributions 

 n = 2 n = 3 n = 4 

Dx 0.08973 0.00884 0.00153 

dx [%] 5.51664 0.54321 0.09403 

Du 0.01854 0.00553 0. 

du [%] 1.56160 0.46610 0. 

Dv 0.00313 0.00040 0. 

dv [%] 0.40258 0.05109 0. 
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Nomenclature 

Di  –  domains of the problem 
d  –  length of domain, [m]  
L  –  latent heat of fusion per unit volume, [Jkg–1]  
t  –  time, [s]  
u, v  –  temperature, [K] 
u*  –  melting-point temperature, [K] 
x  –  space variable, [m] 

 

Greek letters 

a  –  thermal diffusivity, [m2s–1]  
D  –  absolute error 
d  –  relative error, [%]  
Gi  –  boundary of domain 
k  –  thermal conductivity, [Wm–1K–1] 
x  –  function describing position of the phase  
              change moving interface 
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