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By taking equivalent thermal resistance, which reflects the average heat conduc-

tion effect and is defined based on entransy dissipation, as optimization objective,

the “volume to point” constructal problem based on triangular element of how to
discharge the heat generated in a fixed volume to a heat sink on the border through

relatively high conductive link is re-analyzed and re-optimized in this paper. The
constructal shape of the control volume with the best average heat conduction effect
is deduced. For the same parameters, the constructs based on minimization of
entransy dissipation and the constructs based on minimization of maximum temper-

ature difference are compared, and the results show that the constructs based on

entransy dissipation can decrease the mean temperature difference better than the
constructs based on minimization of maximum temperature difference. But with the
increase of the number of order, the mean temperature difference does not always
decrease, and there exists some fluctuations. Because the idea of entransy describes
heat transfer ability more suitably, the optimization results of this paper can be put
to engineering application of electronic cooling.

Key words: constructal theory, entransy dissipation, volume-point heat
conduction, generalized thermodynamic optimization

Introduction

The cooling of electronic components can be concluded as “volume-point” heat con-
duction problem, which can be described as how to determine the optimal distribution of high
conductivity material through the given volume such that the heat generated at every point was
transferred most effectively to its boundary, has became the focus of attention in the current sci-
entific literature [1-9].

The idea of constructal law was introduced by Bejan [2-9], which was described as: for
a finite-size flow system to persist in time (to live), its configuration must change in time such
that it provides easier and easier access to its currents (fluid, energy, species, etc.). The
constructal law was firstly used in the solving of volume-point heat conduction of a rectangular
area by taking the minimization of maximum temperature difference in the area as the optimiza-
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tion objective [1]. As shown in fig. 1, firstly, the maximum temperature difference of the ele-
ment was minimized, and the corresponding optimal elemental shape was obtained. Then, a rel-
atively larger heat generating volume was designed and optimized by introducing a new link of
high conductivity material. A number (,) of optimized elemental volumes were assembled on
the upper and lower sides of the new link. There exists an optimal 7, corresponding to the
minimization of maximum temperature difference of the assembled area (first assembly). The
analogy continued until the control area was recovered by the construct. Scholars made many
studies on this problem using constructal theory [10-29]. The first aspect is to consider a heat
conduction model which is more close to the reality, such as the case that conduction trees with
spacing at the tips [10], the case that heat flux is not linear in high conductive link [11], and the
three-dimensional model [12]. The second aspect is to relax the constraints of the model, such as
adding degrees of freedom to minimize heat resistance [13-18]. The third aspect is to consider
various conduction models such as triangle model [19], disc-shaped area model [20], point-cir-
cle model, point-line model, and point-plane model [21], efc. The fourth aspect is to consider
different optimization objectives, such as entropy production minimization [22], exergy de-
struction minimization [23], and the temperature decreasing time of heat body [24], etc.

Vi w| it i i

Rectangular elemental area First order assembly Second order assembly " order assembly

Figure 1. Constructal optimization procedure of rectangular area

References [1, 10-21] set the minimization of the maximum temperature difference as
the optimization objective which is to limit maximum temperature difference of the body for
safety consideration. Entropy and entropy production are physical quantities defined for transi-
tion between power and heat. Minimization of entropy production or exergy destruction can be
chosen as an optimization objective when it is intended to decrease the loss of available energy,
but the heat transfer mostly focuses on the heat transfer regularity and its transfer speed, not the
exergy lost. Therefore, the entropy generation minimization (EGM) is not entirely consistent
with the heat transfer optimization objective. To solve this shortage in the current heat transfer
theory, based on hypostasis of heat transfer phenomenon, Guo et al. [30] defined a heat transfer
potential capacity and heat transfer potential capacity dissipation function from heat transfer
theory, and pointed out that their physical meanings were heat transfer ability amount and its
dissipation rate in the heat transfer process. In terms of the analogy between heat and electrical
conduction, Guo et al. [31] validated that the heat transfer potential capacity £,, = Q,,7/2 was a
new physical quantity describing heat transfer ability, which was corresponding to electrical po-
tential energy, and named it as entransy. The heat transfer ability lost in heat transfer process
was called as entransy dissipation. The extremum principle of entransy dissipation was pro-
posed as follows: for a fixed boundary heat flux, the conduction process is optimized when the
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entransy dissipation is minimized (minimum temperature difference), while for a fixed bound-
ary temperature, the conduction is optimized when the entransy dissipation is maximized (maxi-
mum heat flux).

The volume to point conduction problem is a classical multi-dimensional conduction,
equivalent thermal resistance, which is based on entransy, is a good reflection of its average
conductive effect. Wei et al. [32] took the entransy dissipation minimization as optimization ob-
jective for volume-point heat conduction based on rectangular element. In this paper, equivalent
thermal resistance is taken as the optimization objective, volume-point heat conduction problem
based on triangular element is re-optimized and new structures and equivalent thermal resis-
tance of each element are deduced. The mean temperature difference is deduced based on equiv-
alent thermal resistance and it is compared with the mean temperature difference of the con-
struct from minimization of maximum temperature difference. The results shows that the
construct based on minimization of entransy dissipation can improve the conductive ability
greatly.

Definition of entransy and equivalent
thermal resistance

Entransy, which is a new physical quantity reflecting heat transfer ability of an object,
is defined in ref. [31] as: 1 1

E,, =5thUh =5thT ()
where Q,;, = Mc,T is the thermal energy or the heat stored in an object with constant volume
which may be referred to as the thermal charge, U, or T represents the thermal potential. The
entransy dissipation function which represents the entransy dissipation per unit time and per unit
volume is deduced as [31]: .

E hy = gvT (2)

where g is the thermal current density vector, and VT — the temperature gradient. In steady-state
heat conduction, £, can be calculated as the difference between the entransy input and the
entransy output of the object, i. e.:

Eh¢ :Evh,in _Evh,out (3)
The entransy dissipation rate of the whole volume in the volume to point conduction is:
E g = [ Eydv 4)

The equivalent thermal resistance for multi-dimensional heat conduction problems
with specified heat flux boundary condition is given as [31]:
R, =L )
. o}
where O, is the heat flow (thermal current). The mean temperature difference for multi-dimen-
sional heat conduction can be expressed as:

AT =R,0, (6)
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Optimization of triangular elemental volume

As shown in fig. 2, a triangular elemental volume (H,L/2) generates heat at a constant
rate g volumetrically. The heat generation rate per unit volume is constant [¢""" = 2¢/H,L,]. The
elemental area size 4, = H,L,/2 is constant but the aspect ratio Hy/L, is free to vary. The heat
generated in the triangular area is first directed to a relatively high conductive link of width D,
which is located on the longer axes of the triangular elemental area. Then it is channeled to a
heat sink located at point M, by the D, link. The boundary of the triangular elemental area is adi-
abatic except for the heat sink point M,,. It is assumed that the thermal conductivity of a high
conductive link (k,) is much higher
than the thermal conductivity of low
conductivity material (k,) and the
area occupied by high conductive
material is much smaller than the
area by low conductivity material. It
is also assumed that the triangular
elemental area is slender enough to
have one-dimensional (y-direction)
heat conduction on the heat generat-
ing area.

The temperature difference dis-
tribution in fig. 2 where y > 0 can be

Figure 2. Triangular elemental volume described as [19]:
" I"H UIH 3 2 L
T y) =Ty, =—a—yr + L2001 - 2 |y T Z0p 22 T, 20, ©
2k, 2k, L, k,Do\ 6L, 2 2

For the case y <0, the temperature difference can be got by replacing H, to —H,,.
The entransy dissipation rate in the triangular area can be calculated with eq. (4).

H, X

. Ly 2 _f " " " 3 P
Evgo =2 7 g SO PO S PO A1) BE SRR S ) | NI
oo | 2k 2k \ L) kDy\6L, 2 2

— qm2 HSLO + HOZLa
48ky 20Dk,
Fork = k,/ky, 9o = 2Dy/H,, and considering 4, = H,L/2, eq. (8) can be written as:

mzAz
"% LﬂﬁL_o; 9)
k 12 Ly, S5 H, k¢,

®)

Evhq)O =

Taking the derivative of eq. (9) with respect to Hy/L, and setting it to zero yields the
optimal Hy/L, of the element area and its corresponding optimization results are

Hy - 6 s 12
( I, lpt 2\/; (k¢ ) (10)
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Eoppyom =0 |2 (11)
Tk 15k,
1 2
hpom =T | ——=— (12)
ko \[ 15k,
ATy =L | 2 (13)
™k 15k,

Optimization of the first assembly

One way to connect the elemental ”
heat currents is shown in fig. 3 [19]. A Hoop
large number of optimized elemental )
volumes (H o, Ly o) are aligned on
both sides of a new high conductivity
path of width D,, such that the ele-
mental heat currents are collected by
the new path. The outer boundary of
this area is adiabatic except for the D,
patch over the origin, through which
the collected heat current is led to the
outside. The area size 4, = m 4, is
constant, but the aspect ratio H,/L, or
the number of elemental volume 7, is
free to vary. The heat flow of each el-
emental volume is channeled into D,
from M,,, M5, ... , My,

The temperature differences between each interval of are [19]:

_mq"4yH,

[ L,

¥

Figure 3. First order assembly construct

Ty — Ty (14)
11 1 2ka1
Lj 1,j-1 kal 2
Using eq. (3), the corresponding entransy dissipation rate can be calculated as:
. X nlzqugHO
th’),M“Ml = Eh,M“ - Eh,Ml = Qh,M“Ml (TM11 - TM1 )=——— (16)
2k ,D,
Ewp oty = Enpvny = Engoan, =t oay o Taryy =T, )=
_m 220Dy o om {1
k,D, 2

where E), v, (2 <j < ny/2) represents the entransy at point M, ;. The entransy dissipation rate
along D, is equal to the sum of entransy dissipation rates of all intervals on the D;:
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. . . . m/2 . .
Eygont = Engort, = Epgu,, ‘Eh¢,M1)+j§2(Eh¢,Ml,j ~Enp 1) =

_mq"ARH, w2 2 -DPq"AZH,

2k, D, j=2 k, D,
"2A2H, ( n?
S i Y e WL n, >2,and n, is even (18)
2%D, | 6 3

The entransy dissipation rate of the first assembly is the sum of the entransy dissipa-
tion rate of each elemental area and the entransy dissipation rate along D;:

. Az "o "/2A2H n3
E gy =m 0 % +q ool Iy , n;=2,and n, is even (19)
ko \15kg, k, D, 6 3

with 4, = n,4,, becomes:

. H H .
Eyp =q"* A} LR +L £l 4 +—2 ||, n;>2,andn,iseven  (20)
6k,D,  3n | ko \15k¢, k,D

Substituting eq. (10) into eq. (20) yields:

. ///2A2H -
E\p S e il ”_1+i L+L , n;=2,and n, is even (21)
3k, 2D, m 2L, D,
The derivation of eq. (21) with respect to 7, is:
6E "2 A2 ~
vl 47 Aoy 1 1] K +L , n;=2,and n, is even (22)
on, 3k, 2D, n2\2L, D,

Setting eq. (22) equal to zero and solving this equation yields the optimal number of
the elements and the corresponding minimum entransy dissipation rate:

D
My ot = kL—‘+2 (23)

0
qszleO le

1
3 kD L

Evh¢1,m +2 (24)

High conductive material can also be optimized. Letting ¢, = 4, o/A;=(n4,,+
+ D,L,)/(n,4,), one has D, = L(¢, — ¢). Substituting D, = L,(¢, —@,) and eq. (10) into eq.

(24) yields:
q"* A7 2 [
k(¢ —¢o +2 (25)

1
3k, (4 — o)\ Sko,

The derivation of eq. (25) with respect to 7, is:

Evh¢l,m
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24k —¢) 1 2+k(@ —9y)

6Evh¢l,m =l\/g qszlz ]€¢0 _ ¢0 /€¢§ (26)
09, 3V 5 kp (¢ — o) 2 —y) w
kg

Setting eq. (26) equal to zero and solving this equation yields the optimal ¢,

, 20
¢0,opt =%l _¢1 4 ]::2 ¢l ¢1 (27)

Substituting eq. (27) into eq. (28) yields:

7o =%\/1€¢1 +24,36.+20kg, + 97k > (28)

The optimized results of eqs. (27) and (28) are too complicated to put into the next op-
timization step. For simplicity, when k¢, >1, n, ., >1 holds, it is reasonable to assume that the
temperature gradient distribution along D, is linear, which is just the same as the elemental area
[18]. For simplicity in this case, the entransy dissipation rate along D; is:

. . L] qmzle x2
E'h¢’}wl~,n|/2 N EI7¢’M1 = (L X — Tde =

0 k, Dy , n; =2, n,iseven (29)
qw 2A02H0 n13
k,D; 6

Comparing eq. (18) with eq. (29), the difference between eqs. (18) and (29) is only 2/n?2
of eq. (29). When n, , >1, the difference is very tinny. In this case, eq. (20) becomes:

' =q" — + , n;= 2,n 1seven
By =q"242| 2, mH, > 2 30
mky \15k¢, 6k, D,

Taking the derivative of eq. (30) with respect to n, and setting it equal to zero yields
the optimal number of the elements and its corresponding minimum entransy dissipation rate:

Mo = VK@ — o) (31)

" 42
Evh¢1,m :‘/z 1 AAI ! (32)
15k o4 — o)
Taking the derivative of eq. (32) with respect to ¢, and setting it to zero yields the opti-
mal ¢ 1
¢0,opt = 5 ¢1 (33)

The optimization results of the first assembly are:

oy = % Jes, (34)
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[ j ‘f\/% (35)
H, B é
(let _2(6 (36)

) "2 42
Erigt.om =2\E (" (37)
’ 15 kd
o =2y (38)
15 ko ke,
AT =2\/zﬂ (39)
VIS kokg,

Equation (34) agrees with n, ,, >1, the assumption that the temperature gradient dis-
tribution along D, is linear is reasonable.

Vi Optimization of second assembly
B l— Hi ot —l
i | T P T The new second order assembly
- I e ol construct, as shown in fig. 4 [19], is
5 composed of a number (n,) of opti-
He e e =] %5 mized first order assembly constructs.
s S s e l Itis assembled just as the first order as-
1 0, = .
M, ki B il s T . ;embly constructs. The area gf A, is
= P ixed, but H,/L,, the aspect ratio of the
P S Sy .(;’2\/‘_\,, new construct, or n,, the number of
4 T N constituents inside the construct is free
to vary. The boundary of the construct
= s is adiabatic except for the heat sink
= S il el L . point located at M,.
Just like eq. (20), one can derive the
Figure 4. Second order assembly construct [19] entransy dissipation rate at the second

assembly:
Evh¢2 \/EqWZAz q"2A’H, [ﬁ+n_2J:
5 k¢ k,D, 6 3
&) A 2
_1 2_ 81+;\/E+"—2\/E (40)
k, 5o 3= V3 ) 6(hy—¢) V3
Optimizing eq. (40) with respect to 7, and ¢, gives the optimization results:

Do =¢¢2 @1)
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iy g = 2.55395 (42)

The optimal number of the optimized first order assembly constructs is an even num-
ber, and it may be 2 or 4.
The optimization results with respect to n, = 2 are:

Brom =25 ~2)p, 43)

) 12
E g2 ,=2.mm = 163808¢"2 —2— 4
pT2
The optimization results with respect to n, = 4 are

23410 -4y,
¢1,opt - T
207558¢"2 42

kp¢2
Comparing eq. (44) with eq. (46), one can see that n, ,, =2 is the best result. The opti-
mal results of the second assembly are:

(45)

(46)

Evh¢2,n2:2,mm =

D
(—2] =489898 47)
1 Jopt
(H_] _ 48)
Ly ), Vo
163808 49)
h,2,mm — ~
kokg,
AT, :1.6380§q A, (50)
koko,

Optimization results and analyses

Using the same steps mentioned, one can obtain the optimization results of the third
assembly and even higher order assemblies. The major results are listed in tab. 1, in which rep-
resents the non-dimensional mean temperature difference of the volume and it is the reflection
of optimal heat transfer ability of each assembly.

Supposing the volume of each assembly 4, is the same that the volume fraction of high
conductivity material in each assembly ¢, is the same (i =1, 2, 3...), thatis¢, =¢,=... =@, = ¢
and 4, = A4, = ... = A; = A. Two mean temperature difference curves are obtained according to
egs. (13) and (39) when elemental design and first order design are studied, as shown in fig. 5.
Figure 5 shows that the mean temperature difference of the elemental design is smaller than that
of the first order design when k¢ < 4. While when k¢ > 4, the conclusion is reversed. That is to
say, 4 is a critical value for k¢. When k¢ < 4, the optimal design should be the elemental one.
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Table 1. Constructal optimization results based on minimization of entransy dissipation rate
Order of D; [ Aikp¢i
assemby ni,opt D_ T "
construct i1/ opt i/ opt q"4;
- 2 e~
0 2\/E (kg )™/ —Vk¢;
5 15
2 73 [k, 6 15
2 2 4.89898 2 1.63808
6
1 /6
3 8 2.50713 — = 2.56169
2V5
4 6 6.22064 218 165649
3V5
AT When I€¢ > 4, the internal complexity
A |l === Elementdesion should increase, i. e., the first order
087" — First assembly design design should be adopted.

0.6+

0.4+

0.24

00

0

Figure 5. Mean temperature difference of elemental
design vs. first order design

The major optimization results
based on the minimization of the max-
imum temperature difference ob-
tained inref. [19] are listed in tab. 2, in
which (AT;" k,$,)/(q"4;) represents
the non-dimensional mean tempera-
ture difference of the volume when
each assembly achieves its minimum
of the maximum temperature differ-
ence. Comparing tab. 1 with tab. 2, the
optimal constructs of each assembly
based on the entransy dissipation
minimization are different from those

based on the maximum temperature difference minimization. The reason has been explained in
ref. [32]: when the thermal current densities in the high conductive link are linear with the
length, the optimized shapes of assemble based on the minimization of the entransy dissipation
are the same as those based on the minimization of the maximum temperature difference. When
the thermal current densities in the high conductive link are not linear with the length, and the
optimized shapes of assemble based on the minimization of entransy dissipation are different
from those based on minimization of the maximum temperature difference. The thermal current
densities in high conductive link based on triangular elements are all not linear with the length,
so the optimized shapes of assemble based on the minimization of entransy dissipation are dif-
ferent from those based on the minimization of the maximum temperature difference.
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Table 2. Constructal optimization results based on minimization of maximum

temperature difference (ref. [19])

Order of Di Hi ATi,max kp¢i A]Ti”'l%‘pi L
assemby 7 opt D . T4 T( !
construct i=1/ opt i J opt G q"4;
2716 = 25/6 = -
0 W\/k(ﬁo m,/k@ 0.3760614/ k¢,
/3 = o3 = 4
! s Vi s VA Vs Vs 138847
2 2 {23 2 2.8677 2.50920
NG . .
3 2 2 NG 2.7899 2.53988
4 2 2 2 3.7201 3.51595
NG . .
(*) This column was deduced from ref. [19] by the authors of this paper
A comparison of mean tempera- _ 351
ture difference between constructs ATk, —— Minimization of the entransy dissipation
.. . Py - - --Minimization of the maximum -
based on minimization of entransy 974 3.0 1 -

dissipation and those based on
minimization of the maximum tem-
perature difference is shown in fig 6.
The mean temperature difference
based on minimization of entransy
dissipation is smaller than that based
on minimization of the maximum
temperature difference. It means that
constructal optimization based on
entransy dissipation minimization
can improve the heat transfer ability
of the whole volume more greatly
than that based on the maximum tem-
perature difference minimization.
The effect of order on the mean tem-

temperature difference -

2.5

2.0

1.5

1.0

0.5 T 1
1 2 3 i 4

Figure 6. Mean temperature difference based on the
minimization of the entransy dissipation vs. mean
temperature difference based on the minimization of the
maximum temperature difference

perature difference based on entransy dissipation minimization and that based on the maximum
temperature minimization are also shown in fig. 6. It can be seen that the mean temperature dif-
ference based on the entransy dissipation minimization or the maximum temperature difference
minimization does not always decrease when the order increases, and there exist some fluctua-
tions. It means that more complex constructs of the high conductivity distribution do not always
mean better heat transfer ability and there existing a optimal assembly order to achieve the mini-

mum mean temperature difference.




Wei, S., et al.: Constructal Entransy Dissipation Minimization for “Volume-Point” ...
1086 THERMAL SCIENCE: Year 2010, Vol. 14, No. 4, pp. 1075-1088

Conclusions

In the process of energy transfer, the heat transfer is always accompanied by the
entransy transfer. The entransy is not in conservation due to dissipation. The equivalent thermal
resistance defined based on the entransy dissipation rate reflects the conduction ability in the
heat transfer process. The smaller the equivalent thermal resistance, the better the conductive ef-
fect, and the lower the mean temperature in the volume. The “volume to point” conduction
problem is a classical multi-dimensional conduction with fixed boundary heat flux. The opti-
mized constructs based on the minimization of entransy dissipation rate are results of the optimi-
zation of the average conductive effect, which is different from the optimized constructs based
on the minimization of the maximum temperature difference in refs. [1, 19]. The optimized re-
sults show that the constructs based on the minimization of the entransy dissipation rate can de-
crease mean temperature difference better than the constructs based on the minimization of the
maximum temperature difference. It is seen that both the minimum of the maximum temperature
difference and the minimum of the mean temperature difference increase fluctuantly as the order
increases. It means that high complex construct dose not mean low thermal resistance. The
equivalent thermal resistance reflects the average conductive effect in the volume, and it repre-
sents the efficiency. The minimum thermal resistance reflects the maximum temperature differ-
ence in the volume, and it represents the maximum temperature limitation in the volume. Both
the mean temperature difference and the maximum temperature difference should be combined
when considering the efficiency and the temperature limitation simultaneously. Because the
idea of entransy describes heat transfer ability more suitably [31], the optimization results of this
paper can be put to engineering application of electronic cooling.
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Nomenclature

A, — area of high conductive material, [m’] ko — thermal conductivity of the low

Cy — specific heat at constant volume, conductive material, [Wm 'K ']
[Tkg'K™] L — length, [m]

D — width of the conducting path, [m] M — weight, [kg]

Ey — entransy, [JK] n — number

Eus  — entransy dissipation rate, [WK] o — thermal current, [W]

E\us  — entransy dissipation rate of the whole O, — heat capacity at constant volume, [J]
volume, [WK] q — heat generation rate, [W]

H — height, [m] q — thermal current density vector, [W]

k — thermal conductivity ratio of high q" — heat generation rate per unit volume,
conductive material to low conductive [Wm™]
material, [] Ry, — equivalent thermal resistance, [KW ']

k, — thermal conductivity of the high T — thermal potential, [K]

conductive material, [Wm'K™'] U, — thermal potential, [K]
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v — volume, [m’] Subscripts

Greek symbols in input

. . m — minimum value

¢ — area size ratio, [-] mm double minimum value

VT  — temperature gradient, [K] opt optimal value

AT — mean temperature difference, [K] out — output

AT" - mean temperature difference 0,1, element, first order assembly, second
corresponding to maximum temperature 2,..,i order assembly,...i" order assembly order
minimization, [K]
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