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Creep stresses and strain rates have been derived for a thin rotating disc with shaft
at different temperature. Results have been discussed and presented graphically. It
has been observed that radial stress has maximum value at the internal surface of
the rotating disc made of incompressible material as compared to circumferential
stress and this value of radial stress further increase with the increase of angular
speed. With the introduction of thermal effect, it has been observed that radial
stress has higher maximum value at the internal surface of the rotating disc made of
incompressible material as compared to circumferential stress, and this value of
radial stress further increases with the increase of angular speed as compared to
the case without thermal effect. Strain rates have maximum values at the internal
surface for compressible material. Rotating disc is likely to fracture by cleavage
close to the inclusion at the bore.
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Introduction

Rotating discs are an essential part of the rotating machinery structure, e. g. rotors, tur-
bines, compressors, flywheel, and computer’s disc drive. The analytical procedures presently
available are restricted to problems with simplest configurations. The use of rotating disc in ma-
chinery and structural applications has generated considerable interest in many problems in do-
main of solid mechanics. Solutions for thin isotropic discs can be found in most of the standard
creep textbooks [1-6]. Wahl [7] has investigated creep deformation in rotating discs assuming
small deformation, incompressibility condition, Tresca yield criterion, its associated flow rule
and a power strain law. Seth’s transition theory [8] does not acquire any assumptions like yield
condition and incompressibility condition, thus poses and solves a more general problem from
which cases pertaining to the above assumptions can be worked out.

Seth [9] has defined the generalized principal strain measure as:
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where 7 is the measure and el.f — the Almansi finite strain components [9]. For n=-2,-1,0, 1,
and 2 it gives Cauchy, Green Hencky, Swainger, and Almansi measures, respectively.

In this paper, the problem of creep transition stresses in a thin rotating disc with shaft
by finitesimal deformation under steady-state temperature is investigated by using Seth’s transi-
tion theory. Results have been discussed and presented graphically.

Governing equations

A thin annular disc with central bore of radius a and outer radius 4 is considered (fig.
1). The disc, produced of material of constant density, is mounted on a rigid shaft. The disc is ro-
tating with angular speed @ about a central axis perpendicular to its plane. The thickness of disc
is assumed to be constant and is taken sufficiently small so that the disc

ol ko is effectively in a state of plane stress, that is, the axial stress T}, is zero.
o (_ ™ The temperature at the central bore of the disc is @. The displacement
/;O components in cylindrical polar co-ordinate are given by [9]:
u=r(l-p), v=0, w=dz 2)
where f3 is the position function, depending on r = (x> +?)""? only, and
d is a constant.
) The finite strain components are given by Seth [9] as:
NP [
S &l == 11- ' +6)°]
SR ool e )
1
oley 6519:5[1—/321]
” 1
ed =—[1-(1-d)?
\JQ‘ zj ) (A )]
BNt ¢y =€ =5 =0 3)

Figure 1. Geometry of ~Where '= dB/dr and meaning of superscripts 4 is Almansi.
rotating disc By substituting eq. (3) in eq. (1), the generalized components of
strain become:

e, =L[1- (" + )]
n

1
699=;(1—,B”) (4)

LY
n

€9 =€ =€, =0
The stress-strain relations for thermo-elastic isotropic material are given by [10]:

Ty = 28,1, + 2ue;— OS5, (i,j=1,2,3) (5)
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where T); are the stress components, A and i — the Lame’s constants, /; = e, — the first strain in-
variant, 6,;—the Kronecker’s delta,& =a(34 +2u),  — the coefficient of thermal expansion, and
©® — the temperature. Further, @ has to satisfy:

Ve =0
@0 140 _14d do_
or dr2  rdr? rdr dr
do k
dar 7
which has solution:
O = k,(logr + k,) (6)

where &, and k, are constant of integration and can be determined from the boundary condition.
Equation (5) for this problem becomes:

rr = M—/’t (err + 669) + 2lLlerV - 2‘1158
A+2u A +2u
221 2uéO

Tog = (€, +egp) +2e59 =

A+2u A+2u )
TZG =T92 =Tzr =Tzz =0

By substituting eq. (4) in eq. (7), the stresses are obtained as:

r, =% 3—2C—ﬁ{1—€+(2—0)(%,+1j +”C§@]

rr

n 2;”[3”
T%:%“ 3—2c_ﬁn[z_C+(1—C)(%+1J +’;§g@} )

Ty=1, =T, =T, =0

Zi

where C is the compressibility factor of the material in term of Lame’s constant, given by C=
=2u/A +2u.
The equations of motion are all satisfied except:

S (1,) =Ty +pr =0 ©)

where p is the density of the material of the rotating disc.
The temperature is satisfying Laplace eq. (6) with boundary condition:
©=0, at r=aq,
O=0 at r =5,

where @, is constant, given by [10]:

k, =

and k&, =logh
log a4
b
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By substituting &, and k, from eq. (6), one gets:

O, log r
O=—1 b (10)
log hd
b
By using egs. (8) and (10) in eq. (9), one gets a non-linear differential equation for S3:
Q2-C)np'P(P + 1) dr _
s

+p"{l-(P+1)" —nP[1-C+2-C)P+D"]} (11)

_npo?’r? nCéo,
2u 2

where @, = @/log(a/b) and 18' = BP (P is function of # and 3 is function of 7).
From eq. (11), the turning points of § are P — —1 and +e.
The boundary conditions are:

u=0 at r=a and 7,,=0 at r=»> (12)

Solution through the principal stress difference

For finding the creep stresses, the transition function is taken through principal stress
difference (see [9, 11-13] and Gupta et al. [14-21]) at the transition point P — —1. The transition
function R is defined as:

R=T, ~Tpy =22 (1= (P +1)"] (13)
n
Taking the logarithmic differentiating of eq. (13) with respect to r, one gets:

nP

d j—
E(logR)_r[l—(P +1)"]

{1—(1) +1)7 = B(P +1)n! %}} (14)

By substituting the value dP/df of fromeq. (11) into eq. (14) and by taking asymptotic
value P — —1, one gets:

(15)

d
—(logR)=—-
dr(g)

24240 o)
[n(3—2C)+1+”p“” G0, j

r2-0C) 2uD" 2upr(2-C)
Asymptotic value of § as P — —1 is D/r; D being a constant.
Integrating eq. (15) with respect to r, one gets:

R =T, — Ty = K,rexp(Fr*? + Gr") (16)

where K is a constant of integration, which can be determined by boundary condition and by:

y=1=C Cg:la—E, k=—[(n+1)+v(n-1)],
-V

2-C’
_a@0(1+v) _ _no’p(l-v) | no?p(l-v?)
- - | ED"(n+2)

G )
D 2uD" (n+2)
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From eq. (13) and (16), it follows:

T, — T, = K exp(Fr'*? + Gr") (17)
By substituting eq. (17) into eq. (9), one gets:
2,2
T, =—K, [r*-lexp(Frm? +Grmydr - 22 1k, (18)

where K, is a constant of integration, which can be determined by boundary condition.
By applying boundary condition (12) in eq. (18), one gets:

pw2b?

K, =-K, [r¥-lexp(Fr"*2 + Grm)dr +
r=b

By substituting the value of X, into eq. (18), one gets:

b 2(h2 —_ 42
T, =—K, [rk-lexp(Frm+2 +Grrydr+ L2022 17) (19)
By substituting eq. (19) into eq. (17), one gets:
b 2 2 _ 42
Ty =K, Drkl exp (Fr™2 + Gr)dr — rhexp (Frm+2 +Gr”)}+—pw (b2 ) (20

From eq. (13) and (17), one gets:
Z—uﬁ" [1—(P+1)"]1=K,rkexp (Fr"? + Gr")
n

Taking asymptotic value P — —1, one gets:

n(l+v)

1/n 1/n
B :{ﬁ (T, —Tpy)K,rkexp (Fr+? +Gr”)} :{ K, rkexp(Frm2 + Gr" )} @1)

where 2u = E/(1 + v) is the Young’s modulus in term of Poisson’s ratio.
By using eq. (21) and eq. (2), one gets:

1/n
Ll=}"—l"‘:n(1;— 12) KlrkeXp (Frm+2 + Grn ):| (22)

By applying boundary condition (12) in equation (22), one gets:
E

b n(l+ v)a*exp (Fa™? + Ga")
By substituting the value of K| into egs. (19), (20), and (22), one gets:

b
Tpy = £ [Irkl exp(Fr*2 + Grn)dr — rkexp (Fr"+? + Gr" )}
n(l+ v)akexp (Fa™? +Ga") |,
2(p2 _p2
L poi(b? —r?) 23)
2
b 2(p2 — 2
T, = £ {j FE-lexp (Frn2 +Grn)dr} y P70 7r7)
n(l+ v)akexp (Fa"? +Ga") |- 2 (24)
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k (Frm+2 + Grn) Vn
r*ex r r
u=r—r P (25)
akexp(Fa"™? +Ga")

Equations (23)-(25) define creep stresses and displacement for a thin rotating disc with
inclusion at temperature @,
By introducing the following non-dimensional components as:
T T, 2p2
R:ﬁy R():g’ o, =, o-gzﬁ, 02 :&’ u:ﬂ) and a@oz@l
b b E E E b

equations (23) to (25) in non-dimensional form become:
1
1 JR*exp(F,R"™? +G,R")dR —
R
n(l + V)Ré( exp(F1R61+2 + Gle) _Rk eXp(FlR n+2 + Gan)

QZ

+—(1-R?) (26)
2
1
o, = 1 |:J'Rklexp(F1Rn+2 +G]Rn)dR:| +
n(1+v)REexp (F\R!*> + G R}!) L&
2
+21-r) (27)
2
1/n
k n+2 n
Uu=R-R R eXp(FlR +G1R ) (28)
REexp(F\R!™* +G\R})
2(1=v2)p» n
Where F'1 :—M’ k:_[n+1+V(l’l—1)] and G1 :@1 (1+V)b
D"(n+2) D" log R,

For a disc made of incompressible material (v — 1/2) egs. (26) to (28) become:

1

k-1 n+2 n _ 2
o = _ 2 - ]QR exp(F,R"™* +G,R")dR +Q—(1—R2) (29)
3nR0 exp(FzR(;’ +G2R(')1) —Rkexp(FzR’”Z +G2R”) 2
2 ke +2 Q2 2
o, = P — - j'R exp(FL,R"™2 +G,R")dR |} +— (1 —-R?) (30)
3nREexp(FLR)*> + GHR)) Lk 2
1/n
k n+2 n
S R_R RF¥exp(F,R +G,R") 31)
REexp(FyRI™2 +GyR D)
2 hn n
where F, :_ﬂ’ k* :_3n+1 and G, :&
4D"(n+2) 2 2D"log R,

Particular case

When there is no thermal effect (@, =0), creep stresses from eq. (26) to (28) become:
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1 1Rk—l FRn+2 dR QZ
= k e VNS | REC SR SRS
L+ VIRGexp(FRE) | Zpk oxp (F R2) 2
1 1 02
o, = {ijlexp(FlR””)dR} +Z=—(1-R?) (33)
n(l+v)RE (F\R?) Lk 2
1/n
Rk F Rn+2
u=R —R % (34)
R exp(FlR(’)’+ )
2(1 — v2\Hn
where F, =220V -1
D"(n+2)
For incompressible material (v — 1/2) eqs. (32) to (34) become:
1
k-1 n+2 _ 2
S D | S (R £ S
3nR§ exp (FLR[*?) —R¥ exp(F,R"?) 2
1 L. 0?2
o, = - - {ij‘lexp(FzR"”)dR} +=—=—(1-R?) (36)
3nRE exp (F,RE ) Lr 2
1/n
k* n+2
L -
Ry exp(FiR;*?)
2 hn
where F, =— 3nQ2b ’ k*:_3n+1
4D"(n+2) 2

These equations are the same as obtained by Gupta and Pankaj [20].

Strain rates

When the creep sets in, the strains should be replaced by strain rates. The stress-strain

relations (5) become:
_1+v

i E

where ¢;; is the strain rate tensor with respect to flow parameter z.
By differentiating eq. (4) with respect to time ¢, one gets:

Coo =—p"'B
For Swainger measure (rn = 1), from eq. (39) it follows:
£gp = ,B

The transition value of eq. (13) as P — —1 gives:

4
T, _ESUT +a0®

(38)

(39)

(40)
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1/n (1+V) 1/n
ﬁ =[i} (Trr _Tee)l/” =[HT:| (Trr _TGB)”n (41)

By substituting eq. (39), (40), and (41) into eq. (38), one gets:

¢, =[n(c, —oy)1+v)]V"1 (o, —vo, +a®)

&gp =[n(o, —oy)1+ V)] (o, —vo, +20)

¢ =-In(0, —0)(1+ VI (v(o, +0,) +aO) (+2)
where © =0, logR/logR,,.
For incompressible material (v — 1/2) eq. (42) becomes:
_|3n(o, —oy) e, — 0, +200
rr 2 2
1/n-1
) 3n(oc, —o 20, —0, +200

1/n-1
‘. =[M} G(o—r —o-9>+a@]

These constitutive equations are same as obtained by Odqvist [5] provided n = 1/N.
Results and discussion

For calculating stresses, strain-rates and displacement based on the above analysis, the
following values have been taken: 2% = pw?b*/E = 50 and 75, v = 0.5 (incompressible material
[21], v=10.42857 and 0.333 (compressible materials [20]), » = 1/3, 1/5, and 1/7 (i. e. N=3, 5,
and 7), @ = 5.0-107 deg F~! (for methyl methacrylate) [22],©,= 0 and 700 °F, ®, =a®,= 0.00
and 0.035,and D = 1.

In classical theory measure N is equal to 1/n. Definite integrals in eqgs. (26) and (27)
have been solved by using Simpson’s rule .

Curves have been drawn in figs. 2(a)-(c) and 3(a)-(c) representing relations between
stresses and radii ratio R = 7/b for a rotating disc made of compressible/incompressible material
with and without thermal effect at different angular speeds. It has been observed, from figs.
2(a)-(c), that in the absence of thermal effect the radial stress has maximum value at the internal
surface of disc as compared to the circumferential stress. It is also observed that the radial stress
has maximum value at the internal surface of the rotating disc with inclusion made of incom-
pressible material as compared to compressible material for measure n=1/7 (or N="7) at angular
speed £? = 50, whereas circumferential stress has maximum value at the internal surface for
measure n = 1/3 (or N = 3) at this angular speed. The values of radial/circumferential stress fur-
ther increases at the internal surface with the increase of angular speed (€22 = 75) for measure n
=1/7 (or N=7) and n = 1/3 (or N = 3), respectively.

With the introduction of thermal effects it can be seen from figs. 3(a)-(c) that much
higher angular speed is required for yielding to appear at the internal surface as compared to the
case without thermal effect. It can also be seen that maximum value of radial stress occurs at the
internal surface.
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Figure 2. Creep stresses for a thin rotating
disc with inclusion along the radius R = r/b
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Curves have been drawn in figs. 4(a)-(f) representing relations between creep strain rates
and radius R = r/b at angular speed 2> = 50 and 75 and measures n=1/7, 1/5,and 1/3 (or N=17, 5,
and 3). It can been seen that rotating disc made of compressible material has higher maximum value
at the internal surface as compared to incompressible material at the angular speed €22 = 50. The val-
ues of strain rates further increases at the internal surface with the increase of the angular speed €2%=
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Figure 4(a, b, c). Creep strain rate
distribution for a thin rotating disc with
inclusion for n =1/7, 1/5, and 1/3,

and Q* = 50 and 75

75. With the introduction of thermal effects, the maximum value of strain rates at the internal surface
is higher as compared to the case without thermal effect.
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Nomenclature Greek letters
. . ) & — Swainger strain components, [—]
a, b — internal aqd'e'xtemal radii of the disc, [m] 0,0 — temperature, [K]; O, = a®, [-]
C — compressibility factor, [—] o v — Poisson’s ratio, [-]
ey, Ty, — stress strain rate tensors, [kgm s ] p — density of material, [kgm ]
KK, . . o, — radial stress component (= 7,,/E), [-]
ky, — constants of integration, [-] oy — circumferential stress component
R — radii ratio (= r/b), [-] (= To/E), [-]
Ro — radii ratio(= a/b), [-] o2 — speed factor (= pw,b*/E), [-]

u, v, w — displacement components, [m]

0} — angular speed of rotation, [s']
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