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The problem of steady incompressible mixed convection flow past vertical flat plate
has been considered. The velocity and temperature equations for this problem are
reduced to set of non-linear ordinary differential equations by appropriate trans-
formation and are solved by optimal homotopy asymptotic method. Results show
that this method provides us with a convenient way to control the convergence of
approximation series and adjust convergence regions when necessary. It is con-
cluded that increment of the Prandtl number leads to diminishing of the tempera-
ture values.
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Introduction

The boundary layer flow of laminar two-dimensional motion of fluid past a semi-infi-
nite vertical plate, with the free stream velocity and temperature have been considered. As it is
shown schematically in fig. 1, for flow past vertical plates, induced body force due to heat trans-
fer is either parallel or anti-parallel to the mean convection direction.

Most of engineering problems cannot be analytically solved using traditional methods.
In the old analytical perturbation method, small parameter should be exerted and that was the
difficulty of this method. Nayfeh [1] has presented perturbation techniques, pointing out their
similarities, differences, and advantages, as well as their limitations. Various powerful mathe-
matical methods have been recently introduced to eliminate the small parameter, such as
homotopy perturbation method [2-7], variational iteration method [8], homotopy analysis
method [9-11], differential transformation method [12-14], etc. The other developed method is
optimal homotopy asymptotic method (OHAM) [15-19] which is most applicable in analytical
analysis of engineering problems. Marinca et a/. [16] used this method to solve some non-linear
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equations arising in heat transfer. Ob-

tained results by OHAM, which did

not need small parameters were com-

pared with numerical results and a very

X good agreement was found. Then they

XL Tu implemented this method to solve

other non-linear problems in engineer-

Edge of , —] ing and have shown that this method

boundary layer Body force  provides us with a convenient way to

Flow control the convergence of approxima-

Tw tion series and adjust convergence re-

gions when necessary [17-18]. After

them, Joneidi ef al. investigated on

micropolar flow on a porous channel

with high mass transfer using this ana-

lytical method [20]. In the present research, mixed convection flow past a vertical flat plate has
been studied by OHAM.
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Figure 1. Mixed convection flow over a vertical flat plate

Optimal homotopy asymptotic method

We apply this method to the following differential equation:
Llu(7)] + N[u(7)] + g(r) =0, B(u)=0 (1

where L is a linear operator, 7 denotes an independent variable, u(7) is an unknown function,
2(7)—aknown function, M[u(r)] — a non-linear operator, and B —a boundary operator. By means
of OHAM, one first constructs a family of equations:

(= p)Ld(z, p)l+g(0)} = H(p){LI(7, p)]+g(7) + N[¢(z, p)]} =0
B[4(z, p)]=0

where pe[0,1] is an embedding parameter, H(p) — a non-zero auxiliary function for p # 0 and
H(0) =0, and ¢(z, p) — an unknown function. Obviously, when p =0, p = 1, it holds that:

¢(7.0) = uy (1), ¢(z.1) = u(7) €)

Thus, as p increases from 0 to 1, the solution ¢(z, p) varies from u(7) to the solution
u(t), where u(7) is obtained from eq. (2) for p = 0:

)

Lluy (1)]+g(1) =0, B(uy)=0 “4)
We choose the auxiliary function in the form:
H(p)=pC, + p,C, +... (5)

where C,, C,, ... are constants which can be determined later.
Expanding ¢(z, p) in a series with respect to p, one has:

(b(Ta )2 Cz) =1Uy (T)+kz>:1uk (Ta Ci)pk’ i=1: 2: (6)
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Substituting eq. (6) into eq. (2), collecting the same powers of p, and equating each co-
efficient of p to zero, we obtain set of differential equation with boundary conditions. Solving
differential equations by boundary conditions (1), u,(z, C,), u,(z, C,),... are obtained. Gener-
ally speaking, the m™-order approximate solution of eq. (1) can be written in the form of:

70 =uy () + Yuy (1,C,) (7
k=1

Note that the last coefficient C,, can be function of . Substituting eq. (7) into eq. (1),
there results the following residual:

R(z,C;) =L[u ™ (7,C;)]+g(7) + N[u " C,)] ®)

If R(z, C;) = 0 then & ™ (z, C;) happens to be the exact solution. Generally such a case
will not arise for non-linear problems, but we can minimize the functional:

b
J(C,,Cy,....C ) = [R*(1,C},Cs,...,C, )t (9)

where a and b are two values, depending on the given problem. The unknown constants C(i=1,
2,..., m) can be identified from the conditions:

oJ _9oJ _ 0 (10)
oc, 0C,

with these constants known, the approximate solution (of order m), eq. (7), is well determined.
Description of the problem

We consider the laminar two-dimensional motion of fluid past a semi-infinite verti-
cal plate, with the free stream velocity and temperature denoted by, U, and T... We consider
the flow over isothermal vertical plate, for which the surface temperature (7,,) is greater than
the free stream temperature (7). Governing equations are presented in non-dimensional form
with the buoyancy term modeled by the Boussinesq approximation. Non-dimensionalization
of equations are performed by introducing an appropriate length (L), velocity (U.,,), tempera-
ture (AT=T,,— T.,) and pressure scales (pU 2). These equations for the velocity and tempera-
ture fields are as given in Gebhart et al. [21].

VV=0 (11)
DV _ S rovpilvey (12)
Dt Re? Re
E: 1 var (13)
Dt RePr

where 7= (T" — T.)/AT and Gr = gB ATL3/v3, Re = U_L/v, and Pr = v/a, where a is the thermal
diffusivity of the fluid and 7* — the dimensional temperature in the field. In the momentum con-
servation equation, the quantity is also known as the Richardson number (Ri). Positive and neg-
ative signs of Ri refer to assisting and opposing flows, respectively, that in this work positive
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sign is considered. The Grashof number weighs the relative importance of buoyancy and vis-
cous diffusion terms and in the mixed convection regime. Ri is of order one.

The mean flow equations are obtained by invoking boundary layer approximation for
two-dimensional steady incompressible flow with constant properties and Boussinesq approxi-
mation. The mean flow equations are obtained using the following variables = y(U./vx)"? for
the independent variable w/U_ = F'and (T" — T.)/(T,, — T..) = T for the dependent variables and
are obtained from the solution [22]:

f’”+%+RixT:0 (14)

f0)=0, f(0)=0, f(=)=1
T”+%fT':0 (15)

7(0)=1, T(=)=0

where Ri, = Gr,/Re? is the buoyancy parameter. In these equations, primes indicate derivatives
with respect to 77. As Ri, is a function of x, similarity solution does not exist.

Solution with optimal homotopy asymptotic method

In this section, OHAM has been applied to non-linear ordinary differential egs. (14)
and (15). According to this method, applying of eq. (2) to egs. (14) and (15) yields:

ﬂ—muw+f—D—HAm@W+%;+mﬂw4—foJ
(16)

(1—p)(T’+T)—H2(p)[T"+%fT’—(T’+T)}=0

where primes denote differentiation with respect to 7.
We consider f, T, H,(p), and H,(p) as following:

f=h+ph+prh

T:To+pT1+p2T2 (17)
H,(p) = pCy, +chlz

Hy(p)=pCy, +172C22

Substituting 1, T, H,(p), and H,(p) from eq. (17) into eq. (16) and some simplification
and rearranging based on powers of p-terms, we have:

P =L [ £ =0 .
fO(O):OJ f(;(O):O,f()’(oo)zl
T, + T =0

T,0) =1, Tj(=)=1
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Pl =f=Cy = [+ 1+ C f + [ =05Cy fofg + Cri fo + f"= fo —=Ciy —CyRT; =0 (19)
£10)=0, f/0)=0, f/(=)=0
L +Cy Ty +Cy T, - Ty + T} = C,, Ty — T, —05C,, Pr f,T; =0
T,(0)=0, T (=)=0
PEC 7 ~05C, fof = 1 ~05C,, fufd = Coa i+ Coafi+ oy S =05Cy, fifd = (20)
—Cp + 7+ 7 =N =Ci fi"=CRTy =C,RT, +C,, /) =0
£O)=0, f;0)=0, f(=)=0
Ty +Cy\ Ty =T, + Cy T + Cyy Ty = Cop T+ T; = 05Cy, Pr £ T = Cy, 1) -
~05C,, Pr foT} T} + Cy T} —05Cy, Pr £,T) =0
L,0)=1 T,(*)=0

Solving eqs. (18)-(20) under the related boundary conditions, we have:

=eM+n-1
fo=¢ n @1)
TO =e N
fi(m)=C,,e ™ +05C,,e™ +025C,,e 21 —025¢1C,;n* — 22)
- 1C,,Rn—C, Re " -0.75C,, +CR
T, (n) =[-05C,, 2n—Pre7+05Prn? —Prn) —05C,, Prle ™"
' (23)

S =rfo)+110D) + /> ()
T =To(m+ T, () + T, (1)

From eq. (8) by substituting f{n7) and 7(n) to eqs. (14) and (15), R,(n, Cy,, C},) and
R,(n, Cy;, C,,) are obtained and J; and J, are obtained in the flowing manner:

Ji(C1,Cn) = £R12(77,C11,C12)d77
J1(Cyy,Cpy) = ({Rzz (1, Cy,Cpy)dn

The constants C|,, C},, C,,, and C,, are obtained from the conditions (10). In the par-
ticular cases:
Pr=0.7, R=0.05
C,, =-0.6431661413, C,, =3.163858714,
C,, =0.7875530889, C,, =0.9682570954

Conclusions

In this present work, the OHAM is successfully applied to obtain analytical solution of
laminar two-dimensional motion of fluid past a semi-infinite vertical plate. Validity of this
method has been shown in fig. 2 by comparison between OHAM and numerical solution results.



Babaelahi, M., et al.: Analytical Treatment of Mixed Convection Flow Past ...

414 THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 409-416
1.0 1.0
#n) ) Figure 2. Comparison of the
0.8 NS 0.8 s solutions via OHAM and
OHAM OHAM numerical solutions for f'(17)
0.67 0.6 and 7(n)
(a) for R = 0.01 and Pr = 0.5;
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Figure 3. Velocity vector

in x-direction;

(a) for R = 0.01 and Pr = 0.5;
(b) for R =0.1and Pr= 0.7
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Figure 4. Vector line
(a) for R = 0.01 and Pr = 0.5,
(b) for R = 0.1 and Pr = 0.7

Velocity vectors and lines have been shown in
figs. 3 and 4 for two cases. Velocity distribution in
x- and y-direction has been also depicted in fig. 5.

In addition, temperature distributions for two
cases have been shown in figs. 6-8 by plotting tem-
perature vectors and lines. The effects of buoyancy
parameter and Prandtl number on temperature and
velocity profile have been shown in figs. 9 and 10.
Results show that the velocity increases with incre-
ment of the buoyancy parameter and temperature

Figure 5. Velocity distribution R =0.01 and  decreases with increasing of Prandtl number.
Pr=0.5

0.00.0
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