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In this pa per, stag na tion flow of a micropolar fluid to wards a ver ti cal per me able
sur face with two cases, New to nian fluid (K = 0) and non-New to nian fluid (K = 1)
are stud ied in pres ence of suc tion and in jec tion. The trans formed non-lin ear equa -
tions are solved an a lyt i cally by homotopy anal y sis method and some re sults are
com pared with nu mer i cal so lu tions for va lid ity. An a lyt i cal re sults for the ve loc ity
pro files, the tem per a ture pro files, the skin fric tion co ef fi cient and the lo cal Nusselt
num ber are pre sented for var i ous val ues of the flow pa ram e ters and also these re -
sults dem on strate ob vi ous ef fect of suc tion and in jec tion on tem per a ture pro files on
in ves ti ga tion of such flows, par tic u larly for non-New to nian fluid.
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In tro duc tion

The the ory of micropolar flu ids which was orig i nally for mu lated by Eringen [1] can be 
used to ex plain the flow of crys tals, an i mal blood, paints, poly mers, etc. The the ory in tro duces
new ma te rial pa ram e ters, an ad di tional in de pend ent vec tor field – the microrotation – and new
con sti tu tive equa tions which must be solved si mul ta neously with the usual equa tions for New -
to nian flow. Ramachandran et al. [2] stud ied lam i nar mixed con vec tion in two-di men sional
stag na tion flows around sur faces. He con sid ered both cases of an ar bi trary wall tem per a ture and
ar bi trary sur face heat flux vari a tions and found that a re versed flow de vel oped in the buoy ancy
op pos ing flow re gion, and dual so lu tions are found to cer tain range of the buoy ancy pa ram e ter.
Hassanien et al. [3] ex tended Ramachandran’s work to micropolar fluid. They con sid ered both
as sist ing and op pos ing flows, but the ex is tence of dual so lu tions was not re ported [4]. Devi et al.
ex tended the prob lem posed by Ramachandran et al. [2] to the un steady case, and they found
that dual so lu tion ex ist for a cer tain range of the buoy ancy pa ram e ter when the flow is op pos ing.
Sim i lar prob lem for steady and un steady cases, for a ver ti cal sur face im mersed in a micropolar
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fluid was in ves ti gated by Lok et al. [5, 6]. Ex is -
tence of dual so lu tions was re ported in [5] only
for the op pos ing flow re gime. The pres ent study
will show that dual so lu tions ex ist in the op pos -
ing flow re gime and they con tinue into that of
the as sist ing flow re gime, i. e. when the buoy -
ancy force acts in the same di rec tion as the in er -
tia force. Sketch of the prob lem is de picted in
fig. 1. Re cently, much ef fort put on con struct ing 
an an a lytic so lu tion of these equa tions. One of
these tech niques is homotopy anal y sis method
(HAM), which was in tro duced by Liao [13-18].
This method has been suc cess fully ap plied to
solve many types of non-lin ear prob lems
[19-21].

Prob lem for mu la tion

Con sider a lam i nar two-di men sional stag na tion flow of an in com press ible
micropolar im pinges nor mal to a ver ti cal heated plate. It is as sumed that the free stream ve loc -
ity U and the tem per a ture of the plate Tw(x) vary lin early with the dis tance x from the stag na -
tion point, i. e. U = ax and Tw(x) = T4 + bx, where a and b are pos i tive con stants. Un der these
as sump tions along with the Boussinesq ap prox i ma tion, the steady lam i nar bound ary layer
equa tions gov ern ing the flow are as fol lows:
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sub ject to the bound ary con di tions:
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where u and v are the ve loc ity com po nents along the x- and y-axes, re spec tively, T is the fluid tem -
per a ture, N – the com po nent of the microrotation vec tor nor mal to the x-y plane, r – the den sity, j – 
the mi cro-in er tia den sity, m – the dy namic vis cos ity, k – the gyro-vis cos ity (or vor tex vis cos ity), g
– the spin-gra di ent vis cos ity, and Vw – the  uni form sur face mass flux. The last term on the
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Figure 1. Physical model and co-ordinate system



right-hand side of eq. (2) rep re sents the in flu ence of the ther mal buoy ancy force on the flow field,
with “+” and “–” signs per tain ing, re spec tively, to the buoy ancy as sist ing and the buoy ancy op -
pos ing flow re gions. For the as sist ing flow, the x-axis points ver ti cally up wards, while  it  points 
ver ti cally  down wards  for  the  op pos ing flow. We as sume that, g = (m + k/2) j = m(1 + K/2)j, where
K = k/m is the ma te rial pa ram e ter.  This as sump tion is in voked to al low the field of equa tions to
pre dict the cor rect be hav ior in the lim it ing case when the microstructure ef fects be come neg li gi ble 
and the to tal spin  re duces to the an gu lar ve loc ity (see Ahmadi [7], Kline [8], or Gorla [9]). This as -
sump tion has also been used by the pres ent au thors to study dif fer ent prob lems in micropolar flu -
ids [10-12].

To seek sim i lar ity so lu tions for eqs. (1)-(4) sub ject to the bound ary con di tions (5), we
in tro duce the fol low ing dimensionless sim i lar ity vari ables:
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where h is the in de pend ent sim i lar ity vari able, f(h) – the dimensionless stream func tion, C(h)
– the dimensionless microrotation, q(h) – the dimensionless tem per a ture, and v – the ki ne -
matic vis cos ity of the fluid. Fur ther, y is the stream func tion which is de fined in the usual way
as u = ¶y/¶y and v = –¶y/¶x so as to iden ti cally sat isfy eq. (1), us ing eq. (6), we get:

u Uf v a f= ¢ = -( ), ( )h n h (9)

where prime de notes dif fer en ti a tion with re spect to h. Us ing eqs. (6) and (7), eqs. (2)-(4) re duce
to the fol low ing or di nary dif fer en tial equa tions or sim i lar ity equa tions: 
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The bound ary con di tions (5) now be come:
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where Pr  is the Prandtl num ber and fw = f(0) = –Vw/(na)1/2 is a con stant (suc tion/in jec tion pa ram -
e ter) with fw > 0 cor re sponds to mass suc tion, fw < 0 cor re sponds to mass in jec tion, and fw = 0 is
for an im per me able plate. Fur ther, l (= con stant) is the mixed con vec tion or buoy ancy pa ram e -
ter which is de fined as l = ±Grx/Re x

2 , where Grx = g b(Tw – T4)x3/n2 is the lo cal Grashof num ber,  
Rex  – the lo cal Reynolds num ber, and the “±” sign has the same  mean ing as in eq. (2). We no -
tice that when l = 0, eqs. (8) and (10) are de coup led and a purely forced con vec tion sit u a tion re -
sults. In this case, the flow field is not af fected by the ther mal field. The sign of  l char ac ter izes
the na ture of the de par ture from this sit u a tion. For  l = Grx/Re x

2  > 0, buoy ancy forces act in the
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di rec tion of the main stream and fluid is ac cel er ated in the man ner of a fa vor able pres sure gra di -
ent (as sist ing flow). When l = – Grx/Re x

2 < 0, buoy ancy forces op pose the mo tion, re tard ing the
fluid in the bound ary layer, act ing as an ad verse pres sure gra di ent (op pos ing  low).We also no -
tice that when K = 0 (New to nian fluid), eqs. (8) and (10) re duce to those of Ramachandran et al.
[2], when fw = 0 (im per me able plate), this prob lem re duces to those con sid ered by Hassanien et
al. [3] or Lok et al. [5].

Homotopy anal y sis so lu tion

In this sec tion, HAM is em ployed to solve eqs. (10)-(12) sub ject to bound ary con di -
tions (13) and (14). We choose the ini tial guesses and aux il iary lin ear op er a tors in the fol low ing
form:

f0(h) = fw – 1 + x – e–h

q0(h) =e–h (15)
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As the ini tial guess ap prox i ma tion for f(h), q(h), and C(h):
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As the aux il iary lin ear op er a tor which has the prop erty:

L(c1 + c2h + c3e
–h) = 0,   L(c4 + c5e

–h) = 0,   L(c6 + c7e
–h) = 0 (17)

and ci(i = 1-7) are con stants. Let p Î[0, 1] de notes the em bed ding pa ram e ter and h in di cates
non-zero aux il iary pa ram e ters. Then, we con struct the fol low ing equa tions.

Zero-or der de for ma tion prob lems
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For p = 0 and p = 1, we have:
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When p in creases from 0 to 1  then f(h,  p) vary from f0(h) to  f(h),  q(h, p) vary from
q0(h) to q(h) and C(h, p) vary from C0(h) to C(h). By Tay lor’s the o rem and us ing eqs. (27), we
can write:
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For sim plic ity, we sup pose h1 = h2 = h3 = h, which h is cho sen in such a way that these
three se ries are con ver gent at p = 1. There fore we have through eqs. (28)-(30):
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Mth-or der de for ma tion prob lems
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Con ver gence of the HAM so lu tions

As pointed by Liao, the con ver gence of the so lu tion de pends upon the value of the
aux il iary pa ram e ter h. Fig ures 2-4 show the ad mis si ble value of h, –1 < h <–0.3 for q' and ¢C , and  
–0.8 < h < –0.2 for ¢¢f .

Re sults and dis cus sion

Fig ure 5 il lus trates the ef fects of suc tion and in jec tion on ve loc ity pro file, as can be
seen the value of ve loc ity in creases with raise of fw and microrotation pro file also has a sim i lar
trend as shown in fig. 6

Fig ure 7 de picts that the value of tem per a ture de creases by in creas ing fw and the tem -
per a ture pro file moves closer to the wall.
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Figure 2. h –  curve of ¢¢f (0) at K = 1, Pr = 1,
l = –1, and fw = 0

Figure 3. h –  curve of C'(0) at K = 1, Pr = 1,
l = –1, and fw = 0



Fig ure 8 dis plays the be hav ior of ve loc ity
pro file for two val ues of K, from the fig ure the
value of ve loc ity for New to nian fluid is more
than non-New to nian case.

Fig ures 9 and 10 show the ef fect of fw on the
lo cal Nusselt num ber and the skin fric tion co ef -
fi cient, re spec tively; by in creas ing the value of
l the val ues of ¢¢f ( )0  and q'(0) in crease and this
is more no tice able for Nusselt num ber.

The com par i son of HAM re sults with nu -
mer i cal ones has been made in figs.11 and 12
that are in ex cel lent agree ment which sug gest
that the HAM could be a use ful and ef fec tive
tool in solv ing sys tems of non-lin ear dif fer en tial 
equa tions of en gi neer ing prob lems.
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Figure 4. h –  curve of q'(0) at K = 1, Pr = 1,
l = –1, and fw = 0

Figure 5. Velocity profile f' for various fw when 
K = 1, Pr = 1, and l = –1

Figure 6. Microrotation profiles f' for various fw

when K = 1, Pr = 1, and l = –1
Figure 7. Temperature profiles q for various fw

when K = 1, Pr = 1, and l = –1

Figure 8. Velocity profiles f' for various K when
Pr = 1, and l = –1



Con clu sions

This com mu ni ca tion deals with the stag na tion flow of a micropolar fluid to wards a
ver ti cal per me able sur face. HAM so lu tion has been ob tained for the prob lem. The re sults are
sketched and dis cussed for the fluid and flow pa ram e ters vari a tions. It is found that HAM re sults 
agree well with the nu mer i cal re sults. It is con cluded that HAM pro vides a sim ple and easy way
to con trol and ad just the con ver gence re gion for strong nonlinearity and is ap pli ca ble to highly
non-lin ear prob lems.
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Figure 9. Variation with l of the skin friction
coefficient ¢¢f ( )0  for fw = 0 and 0.5 when Pr = 1
and K = 1

Figure 10. Variation with l of the local Nusselt
number –q'(0) for fw = 0 and 0.5 when Pr = 1 and 
K = 1

Figure 11. Comparison between HAM (u, l)
and numerical solution (¾ , - -) for fw = –0.1 and 
0.5 when Pr = 1, l = –1, and K = 1

Figure 12. Comparison between HAM and
numcerical solution for fw = 0 when Pr = 1, 
l = –1, and K = 1

No men cla ture

a, b –   positive constants, [–]
f –  dimensionless stream func tion, [–]

f0 –  suction/injection parameter, [–]
g –  acceleration due to gravity, [Ls–2]
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