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In this paper, an inverse analysis is performed for the estimation of radiative pa-
rameters from the measured temperature profile in an absorbing, emitting, and
anisotropically scattering medium. The control volume finite element method is em-
ployed to solve the direct problem in a 3-D rectangular furnace. The inverse prob-
lem is formulated as an optimization problem between the calculated and the exper-
imental data and the Levenberg-Marquardt method is used for its solution. The
sensitivity analysis is made in order to determine whether it is possible to identify
the parameters. Also, the effects of angular and spatial grid numbers and the initial
guesses on the accuracy of the inverse problem are investigated. This method com-
bination, which is applied for the first time to solve 3-D inverse radiation problem,
has been found to accurately predict the unknown parameters.
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Introduction

Radiative properties of particles constituting a semi transparent medium can be theo-
retically determined using the complex refractive index, the shape, size, and volume fraction
distribution of the particles. In one hand, the shape of the particles is usually irregular and ran-
dom; therefore, it is necessary to assume an average, smooth shape, such as a sphere, to deter-
mine particle properties theoretically. In the other hand, the complex index of refraction is a
function of the wavelength of the incident radiation and physical and chemical properties of the
material. For these reasons, it is preferable to determine the relevant radiative properties from
experiments. This can be accomplished by combining optical diagnostic techniques with in-
verse analyses of the radiative transfer problem [1].

The determination of medium properties such as absorption coefficient, scattering co-
efficient, phase function, and optical depth as well as surface properties such as emissivity and
boundary temperature has been achieved by inverse radiation analysis from measured intensi-
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ties or temperatures [2-7]. A review of the references for inverse radiation analysis in 1986-1991
is available in the literature [8].

Despite the relatively large interest expressed in inverse radiation problem of parame-
ter estimation, most of the work has considered one, or two-dimensional systems, and in theses
problems only a limited number of the unknown radiation parameters are estimated simulta-
neously. In the present study, absorbing and scattering coefficients and wall emissivity are esti-
mated simultaneously. In the direct problem, the control volume finite element method
(CVFEM) is used to solve the radiative transfer equation (RTE) in a 3-D participating media. In
the inverse problem, the Levenberg-Marquardt method (LMM) is used to minimize the objec-
tive function. The effects of angular and spatial meshes refinement, initial guesses and measure-
ment errors on the accuracy of the inverse analysis are investigated.

Direct radiation problem
Governing equations

We consider an absorbing, emitting, scattering, and gray medium. In this case, the
mathematical formulation of the direct problem is given by:

VI (5Q)Q]=—(k, + k) (5Q) +k,I,(s)+ i_d [1(sQ")P©Q,Q")d’ (1)
T Q=4rx
where (s, Q) is the radiative intensity at position s in the direction(, k, and k, are absorbing and
scattering coefficients, respectively, f(s) — the total blackbody radiative intensity at the temper-
ature of the medium, and P(€2, Q") — the scattering phase function from the incoming Q' direction
to the outgoing direction (2.
The surface bounding medium is assumed gray and emits and reflects diffusely. So,
the radiation boundary condition can be written as:

- 4 —
IW (Q) — SWGSBTW + 1 Ew

i Iw(fz')‘fz’ﬁw‘dﬁ if Qi >0 2)
T Q'n, <0
where g, is the wall emissivity and n , is the unit normal vector to the wall.

The temperature distribution is determined from the following energy equation with a
volumetric heat source of g: -

gkl 0= jaa] 3)
Q=4rn

The direct problem of concern here is to find the temperature distribution 7(s) for
known radiative parameters such as absorbing and scattering coefficients, wall emissivity and
phase function.

Numerical resolution of the direct problem

The control volume finite element method has been demonstrated to be successful in
the solution of radiative transfer in 3-D rectangular enclosures [9], as well as for the
non-axisymmetric radiative problems [10], and also for the solution of radiative transfer prob-
lems in complex geometries [11]. In [9], Grissa et al. have studied four benchmark problems of
radiative heat transfer and they found that the CVFEM is accurate and efficient.
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In the CVFEM, the spatial and the angular domains are divided into a finite number of
control volumes and control solid angles, respectively.

For angular discretization, the total solid angle is subdivided into (N, x Ny) control
solid angles as depicted in fig. 1, where Ap = (9" — ¢7) = 2n/N,, and A0 = (0" —0") =n/N,. N,, and
N, represent numbers of control angle in the azimuthal and polar angle directions, respectively.
These (N,, x Ny) control solid angles are non-overlapping and their sum is 4.

The control solid angle AQ™ is expressed by:

a@m =7 '[sin0dady @)
¢ 0
For spatial discretization, the domain (e,, e,) is subdivided into three-node triangular
elements and control surfaces are created around each node N by joining the controids of the ele-
ments to midpoints of the corresponding sides, fig. 2(a). Then, to create the control volume
AV, fig. 2(b), the control surface is multiplied by Az for nodes within calculation domain (and
by Az/2 when nodes are in boundaries) where Az is the step of calculation in e, direction.

-8, T
)
Figure 1. Angular discretization Figure 2. Spatial discretization

(a) discretization in (e, e,) plane, (b) control volume AV

In the first, the radiative transfer equation integrated over both control volume and
control solid angle gives:
[ ] VI(sQQQAV == | | (k, +k)I(5Q)dQAV + [ [k 1, (s)dQdV +

AV AQm AV AQm AV AQmm

+ [ kg [1(Q")P(Q,Q)dQ'dQdV (5)
AV AV AT =an
To approximate the integrals that represent the extinction, emission and in-scattering
contributions, the radiation intensity is considered constant within AV and AQ™ and is evalu-
ated at the centroid of the control volume and at the centre direction of the control solid angle.
For the term on the left-hand side in eq. 5, the divergence theorem, the skew positive coefficient
upwind (SPCU), and step schemes are used to calculate the corresponding quantity.
The final algebraic equation of the RTE is given by the following expression [9]:

mn mn mn mn mn mn mn mn mn mn
Vi YV e VS A YV L YV S
NgxN,

mn [ mn mn ] mn mn [ mn mnm'n' [ m'n' — §mn
e e YV Y et t m% R (6)
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Then, the algebraic eq. (6) is written in the following matrix form [9]
Al=b

The obtained matrix system is solved using the conditioned conjugate gradient
squared method (CCGS). A detailed calculation can be found in ref. [9].

Equations (1) and (3) are coupled and must be solved iteratively to yield the radiation
and the temperature fields. The computational procedure is as follows:
— Step 1: Assume the temperature distribution,
— Step 2: Calculate the total blackbody radiative intensity /, using the given temperature

distribution,

— Step 3: Solve the radiative transfer equation to obtain the radiative intensity 7,
— Step 4: Solve the energy equation (eq. 3) to update the temperature field, and
— Step 5: If the radiation and the temperature fields are not converged, go to Step 2.

Parameter identification procedure

The estimation of radiative parameters is achieved by a minimization of the objective
function defined in eq. 8. This function is expressed by the square sum of errors between com-
puted temperature obtained from direct problem, 7,(8), and measured temperature, Y,, at i mea-
surement position:

J(B) = ;zl[Y,- ~T,@)P ()

where [ is the total number of measurement points and 3 — the unknown parameters vector.
Sensitivity analysis

This study is essential before starting the parameter identification procedure; in fact it
allows to determine if the parameters could be simultaneously estimated.
The sensitivity coefficients X;; are defined as the first derivative of the estimated tem-
perature at i measurement position, 07}(B), with respect to the unknown parameter, 3, that is:
i :8;;(3), i=l...,0 and j=1..,n, )
J
where 7, is the number of unknown parameters.
Physically, X, is a measure of the effects of changes in unknown parameters on esti-

mated temperature. It is calculated from the finite difference approximation as:

_Ti(ﬁla”"ﬁj + 5ﬂja"'9ﬁnp)_Ti(ﬁ17'“’ﬁj a"'sﬁnp)

i
aps OB
where 6f3; = 107p;.
For the comparison of the sensitivity coefficients and when the parameters do not have
the same units, the following dimensionless quantities are used for the study of sensitivity:

— Ti(ﬁl""’ﬁj +Sﬁj:""ﬂnp)_Tiwlﬁ'“’ﬂj 7""ﬂnp)
Xij = ﬁj (11)
5,

The sensitivity analysis consists of studying the evolution of the different sensitivity
coefficients vs. an explicative variable (position). In general, these coefficients must be large
and uncorrelated with each other.

(10)
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Parameter identification method

The minimization of the objective function is performed by the LMM which is used in
several researches [1, 12-14].
The eq. 8 can be written as: o
J=DTD (12)
where D; is the difference between the measured and computed temperatures:
D; =Y~ T, (13)
Minimizing J with respect to B is equivalent to make its derivates equal to zero:
8J _a(DTD) _ 0
B P
In this equation, the vector D is expanded in a Taylor series and only the first order
terms are retained. To damp oscillations and instabilities due to the ill-conditioned character of

the problem, a damping parameter, 4, is added to yield the LMM [15]. The iterative process is
expressed as:

(14)

Bl =B+ At (15)

where |

AB* (X*)T D* (16)

T (XE)TXE 4 2k

I'and X denote the identity and the sensitivity matrix, respectively, and the superscript k£ denotes
the iteration number.

The iterative procedure is continued until the convergence criterion:
‘Bkﬂ —Bk‘<1o—5 (17)
is satisfied.

Computational algorithm

The steps of reconstructing radiative parameters are summarized as follows.
Itis assume that the temperature is measured, i. e. Yis given. We choose an initial set of
parameters B° and an initial value of the damping parameter A° = 0.001.
The iteration number is initialized (k = 0). Then,
— Step 1: Solve the direct problem with the available estimate $* in order to obtain the
temperature vector T(B¥); then compute the objective function J*, as defined in eq. 8,
— Step 2: Compute the sensitivity matrix from eq. 10,
— Step 3: Calculate B! by using eq. 15,
— Step 4: Compute /(s,€) in €q. 1 by solving the direct problem with boundary condition of eq.
2 and determine the distribution of temperature T(3*") from the energy equation.
— Step 5: Calculate the objective function J<*1,
— Step 6: If J&1 > JFthen AF1 =104%, J**1 «— J* and return to step 2; otherwise, A<"! = A5/10
and the inverse procedure is continued, and
— Step 7: Check the stopping criterion (eq. 17). If it is satisfied then all calculation steps are
terminated; else, replace k+1 by k and return to step 2.
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Results

A 3-D furnace (2 m X 2 m X 4 m) enclosing an absorbing, emitting and anisotropic
scattering medium is considered. The exact value of both &, and &, is 0.5 m™'. The walls are gray
and with emissivity being 0.8. The temperatures of walls are all 7;, = 1000 K. A uniform volu-
metric heat source of ¢ = 5 kW/m? is prescribed in the medium.

An anisotropic scattering medium is considered with Delta Eddington phase function
given by: o o o

PQ,QN)=2/61-QQ")+ (- f)(1+3gQQ") (18)

where 6 is the delta function and the values 0.781 and 0.868 are assigned to the constants fand g,
respectively.

The direct radiation problem was solved by Fiveland [16] using the S, discrete ordi-
nates solution by Coelho [17] using the hybrid finite volume/finite element discretization
method and by Grissa et al. [9] using the CVFEM. However, to the knowledge of the authors,
there is no work dealing specifically with the resolution of this inverse radiation problem.

In the inverse radiation problem, we assume that the temperature is known while the
radiative properties, i. e. absorbing and scattering coefficients and phase function, and the
boundary condition, i. e. emissivity of bottom wall ,, are regarded as unknown.

In order to obtain the measurement temperature, the direct problem is solved with the
exact values of radiative parameters. Then, the obtained numerical solutions are considered as
experimental data after adding small random noise:

Y = Toue + €0 (19)

exact

where o is the standard deviation of the measurement errors and £ — the Gaussian distributed
random error within —2.576 to 2.576 for a 99% confidence bounds.

The CVFEM is used to predict the temperature distribution with (N, x N, x N,) spatial
control volumes and (N,, x N,) control solid angles. N,, N, and N, represent numbers of control
volumes in the e, e,, and e, directions, respectively.

The number of measurement points is set as (N, — 2) points evenly spaced in the
centreline of medium, 7. e., x =y = L/2. All computa-

6 tions are realized with a Pentium (R)4 CPU 3.00 GHz.

% 4 M For the sake of comparison, relative error £ is
S 2 defined as:
3 0 i o |ﬁ1 estimated ﬁi exact |
S e E[%]= x 100 (20)
= e SIS e g
2 -2 1 ek ﬁiexact
g -4 ek - . .
8 o =1 Sensitivity coefficient analysis
2 g - gb
£ ] M The normalized sensitivity coefficients are calcu-
(S — .
z :Z il lated for the five parameters (k,, ky, €, f, and g) using

- T I I I

] ] PR (11). Results obtained are shown in fig. 3. One can
Axial lenght, z [m] note from fig. 3 that the model is very sensitive to the
. . L absorption and scattering coefficients and to the con-
Figure 3. Spatial variations of tant fof the ph functi h itisl iti
normalized sensitivity coefficients of the stant f of the p as_e . I?c 1on, whereas 1t 15 less sensiive
radiative parameters to the bottom emissivity €, and to the constant g of the

o
-
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phase function. Moreover, the reduced sensitivity coefficients X x, and X  are linearly depend-
ents. So, it can not be identified simultaneously. Also, because of the low sensitivity of the con-
stant g, this parameter can not be accurately estimated. Consequently, we assume that the phase
function is known and we attempt to simultaneously estimate k,, k4, and ;..

Case 1. In this case, the initial values of k,, k,, and &, are set as 0.7 m, 0.3 m and 0.6, re-
spectively. The standard deviation of measurement errors is equal to ¢ = 0.07 which corre-
sponds to measured error of 1 =4.82%.

The effect of angular and
spatial grid numbers on the pre-
cision of the estimation is ex-

Table 1. Relative error and CPU time using different
angular and spatial disretizations

ammeq by .con51.der1ng eight NunllberIOf Nlllmber ?f liverse femilis
cases including different num- control volumes | solid angles
ber of solid angles and control o
E [%] CPU

volumes. Table 1 shows the Effect of control volumes [s]
corresponding relative errors k, kq &
and CPU times. In one hand

’ 5x5x%x10 8§ x4 0.24 0.38 1.62 230

the CPU time decreases by us-
ing a reduced number of angu- 10 x 10 x 20 8 x4 021 | 0321 | 0.88 | 387
lar or spatial meshes. On the

other hand, it is observed that 15 % 15 x 30 8 x4 0208 | 0.32 | 0.879| 566
beyond (10 x 10 x 20) control 20 x 20 x 40 8 x4 0.208 | 0.319 | 0.878 | 733
volumes and (8 x 4) solid an-

gles, there is no significant Effect of solid angles

change in the precision of the 10 % 10 x 20 6x4 | 0228 | 034 | 09 | 291

parameter estimation. There-
fore, in the remainder of this 10 x 10 x 20 8 x4 021 | 0321 | 0.88 | 387
work, we provide results con-
sidering (10 x 10 x 20) control
volumes and (8 X 4) solid an-
gles.

10 x 10 x 20 12x6 0.208 | 032 [0.878 | 524

We represent in fig. 4 the comparisons between the measured and the calculated tem-
peratures using the estimated parameters and the residuals. We note a good agreement between
curves. Besides, the residuals that represent the difference between the measured and the calcu-
lated temperature are random and centred on zero.

1024 0.2
< k2]
X, 2
(9] =]
= S
Figure 4. ® 1022 $ 0.1
7] o
(a) Measured g i
and calculated &
temperature 1020 0.0
(b) residuals i
1018 | gimulated measurements -0.17
—— Calculated temperature i
1016 o | 0.2 ‘ . ‘ ‘ ‘
(a) 0 1 (b) 1

2 3 4 .3 4
Axial lenght, z [m] Axial lenght, z [m]
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Case 2. In this case, we study the effect of noise level on the accuracy of the estimation
through various standard deviations. It is observed, from tab. 2, that with the increase in the
measurement errors from ¢ = 0.0 to o = 0.1, the relative errors of parameters increase. For no
measurement errors, the LMM requires more CPU time and the estimation is excellent with neg-
ligible errors.

Table 2. Effect of noise level on the accuracy of the estimation

6=0.0 (n=0.0%) 6 =0.05 (n = 3.44%) 6=0.1(n=6.88%)

EsV.* | E[%] | CPU[s] | EsV.* | E[%] | CPU[s] | Es.V.* | E[%] | CPU[s]
k,[m™"] | 0.50001 | 2-1073 0.50095 | 0.19 0.5031 | 0.62
k,[m™] | 049999 | 2:103 | 757 | 0.5015 | 0.30 382 | 04953 | 0.94 396
& 0.8009 | 0.11 0.8064 | 0.80 07783 | 271

* Es.V. — estimated value

Case 3. The effect of the initial approximations on the accuracy of the inverse estima-
tion is examined. At first, it is assumed that there are no measurement errors. The absorbing and
scattering coefficients and the wall emissivity of the bottom surface are estimated simulta-
neously and the initial values of the parameters are taken arbitrary. Results from the LMM (tab.
3) show that excellent estimation can be obtained even with poor initial values.

Table 3. Effect of initial guesses on the accuracy of the estimation for no measurement errors

Exact Initial values Estimated values Relative error [%] | Number of iterations
valiessl @y o o] @ | ® || lo|lo| @] o] ©
k,[m']| 0.5 0.6 | 0.4 |0.96 0.50001 2:107
kg [m™']| 0.5 03 | 0.7 |0.48 0.49999 2:10°3 9 9 10
& 05 |1 025 | 09 | 0.6 0.79907 0.116

Let us examine the effect of initial guesses with measurement errors (the standard devi-
ation of measurement errors is equal to o =0.07). Table 4 reveals that the relative errors are quite
small even with measurement errors.

Table 4. Effect of initial guesses on the accuracy of the estimation with measurement errors

Exact Initial values Estimated values Relative error [%] | Number of iterations
values| )y T o) [ © | @ [ ® | © | @ | ® | © | @ [ ®]©
k,[m']| 0.5 0.6 | 0.4 |0.96 0.499 0.2
kg[m™]| 0.5 03 | 0.7 |048 0.5016 0.32 7 6 6
& 05 [ 025 | 09 | 0.6 0.79296 0.88
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Conclusions

An inverse radiation problem is solved for the simultaneous estimation of absorbing
and scattering coefficients and wall emissivity in a 3-D furnace from the knowledge of tempera-
ture profile. The parameters’ estimation possibility is analysed from a sensibility study. The op-
timization is achieved using the LMM. Several test cases involving different number of angular
and spatial discretizations, measurement errors, and initial guesses are considered. The results
show that beyond (10 x 10 x 20) control volumes and (8 x 4) solid angles, there is no significant
change in the precision of parameter estimation. Also, it is observed that the LMM does not re-
quire an accurate initial guesses of the unknown quantities even with noise measurement.

Nomenclature

(o]

— vector which represent the difference
between the measured and computed
temperatures

— i element of the vector D

— relative error

— constant of phase function, (0.781)

— constant of phase function, (0.868)

— radiative intensity, [Wmsr ']

— identity matrix

— objective function
absorbing coefficient, [m ]

— scattering coefficient, [m™]

— side length, [m]

— number of measurement points

— unit normal vector

— number of unknown parameters

— scattering phase function

— volumetric heat source, [Wm ]

— position, [m]

— calculated temperature, [K]

calculated temperature with the exact

values of the radiative parameters, [K]

sensitivity matrix

— measured temperature, [K]

, ¥,z — Cartesian co-ordinates
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