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This study presents a numerical solution of inward solidification of phase change
material contained in cylinder/sphere. Here, constant thermal property is assumed
throughout the analysis for the liquid, which is initially at fusion temperature. The
governing dimensionless equations of the above problem and boundary conditions
are converted to initial value problem of vector matrix form. The time function is
approximated by Chebyshev series and the operational matrix of integration is ap-
plied. The solution is utilized iteratively in the interface condition to determine the
time taken to attain a fixed interface position.
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Introduction

Solidification problems have application in many fields of scientific and technological
endeavour. They are interesting both because of diversity of their application and because of
their non-linearity, which is associated with the moving interface. Due to presence of moving in-
terface and non-linearity, the exact solution of these problems are limited and restricted only for
a few specific cases [1-3]. Very few analytical solutions to the solidification problems are avail-
able. Hill [4] summarized some techniques for analytical solution and series solution for solidi-
fication problems. Some approximate analytical solutions for inward solidification in cylindri-
cal/spherical region are discussed in [5-8].

Beside analytical methods, numerical solutions are more common and computer inten-
sive. Hence many numerical methods have been developed. In 1967, Tao [9] developed a nu-
merical method for the solidification problem of a saturated liquid contained in cylindrical or a
spherical container. Voller et al. [10] presented an explicit algorithm to obtained the solidifica-
tion and melting time in circular regions. They assumed first kind of boundary condition
(Dirichlet boundary condition). An implicit finite difference method based on the enthalpy
method for the analysis of phase change problem was reported by Voller [11]. Caldwell et al.
[12] applied a numerical method based on the enthalpy method to spherical solidification. The

* Corresponding author; e-mail: subir_dasO8@hotmail.com



Rajeev, et al.: A Numerical Study for Inward Solidification of a Liquid Contained ...
366 THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 365-372

results are compared to the results obtained by the heat-balance method. Ismail et al. [13] re-
ported a numerical study for spherical solidification by using finite difference approximation
and moving grid approach. They analyzed the effect of the size, thickness and material of the
container and the external wall temperature on the solidification rate. Ismail ez al. [ 14] presented
a numerical study for the spherical solidification under convective boundary conditions. In
2005, Bilir et al. [15] have reported the results of numerical study of inward solidification prob-
lem of a phase change material encapsulated in cylinder/sphere container. Third kind of bound-
ary condition (Robin boundary condition) is assumed. They have used enthalpy method with
control volume approach. Recently, Assis et al. [16] presented numerical and experimental
study of solidification in a spherical shell.

In the present study, a numerical solution of inward solidification of a liquid contained
in cylinder/sphere is reported. The dimensionless differential equations governing the above
process are converted into initial value problem by using central difference operator. The time
function is approximated by Chebyshev series of the second kind and operational matrix of inte-
gration is applied [17] on it. The solution of initial value problem is utilized iteratively in the in-
terface condition to determine the time taken to cover a given interface position. The results are
presented through figures.

7o) Mathematical formulation

Consider a cylindrical/spherical vessel filled with a molten
material at an initial temperature, which is its freezing temper-
ature. At 7= 0, the boundary is cooled by imposing a constant
temperature 7;, which is lower than 7. As time proceeds the
molten material will eventually solidify. The geometry of the
problem is depicted in fig. 1.

The following assumptions are considered here:

— the density change from liquid to solid is ignored,
— thermal properties of solid and liquid are equal,
. L — the thermal resistance of the vessel is negligible, and
Figure 1. Schematic diagram of .. .
. . . the heat transfer process inside the vessel is only by
freezing process in cylinder/ .o . . .
/sphere co-ordinates conduction in radial direction.

Under this assumption the dynamics of freezing can be de-

scribed by the following equation:

ﬂ:i_a[rng} 2y(t)< r<R (1)
r

with, n =1 and 2 for cylindrical and spherical configuration, respectively. The associated initial
and boundary conditions are specified as:

T=T, at t=0 )
T=T, at r=R 3)

The energy balance at the solidification front can be written as:

T=T; at r=21,1) 4)



Rajeev, et al.: A Numerical Study for Inward Solidification of a Liquid Contained ...

THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 365-372 367
or A, (1)
—— =pl| 2 at r=A,(¢ 5
o 1% { a7 } o(0) 5
Ao(0) =R (6)

where « is the thermal diffusivity, k£ — the thermal conductivity, p — the density, A () — the loca-
tion of interface, and L the latent heat of the solidification.

Solution of the problem

Introducing the dimensionless variables [6] and similarity criteria:

le, S:cAT, /l:/lo(t)’ Lo tkAT’ 9:T_T°, 7
R L R PLR? AT
where AT = Ty — T,
The system of the egs. (1)-(6) reduces to the form:
g20_1 of )
ot x" Ox Ox

0(1,7)=0 )
o, 7)=1 (10)
O(x,0)=1 (11)

oA 00
—=—at x=A(r 12
ot Ox 2 (12)
A00)=1 (13)

Replacing the domain [1, 0] x [0, «] by a rectangular grid of points (x;, 7;) with

x; =ih i=0,1,2,..,kt+1
Tj:iAT j=0,1,2,..

where 4 = 1/(k+1), and At is the discretization step for the normalized time variable. Taking
discretization in the space variable x only. By using central difference, the eqgs. (8)-(11) can be
written in vector matrix form as:

-1

5:28h2 AO+B (14)
0'0)=[1,1,1,...,17 (15)
where 6, ] i ]
0,
0= :93 B=

2x +hn
O | 2shex, |
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4 _(2 N @] 0 0 0 0 0
Xy
L 4 —[2 n @j 0 0 0 0
Xy X
A
0 0 0 0 2ty {2+ﬂj
X1 X1

0 0 0 0 0 24 4

L Xy ]

Integrating eq. (14) and using the eq. (15),we obtain:

0(c) - 0(0) = A[O(x) dx + B[1dx (16)

0 0

The approximation of 8(z) by Chebyshev series gives:
0(7) =DF(7) (17)
1 =EF(1) (18)
where [dyy dyy dy,, |
dzl dzz ------ dz’n
b= .. . ...
dkl dk2 ------ dkm

d.(i=1,2,3,..,k j=1,2,3, .., m)are the Chebyshev coefficients of matrix D,

)

E=[1,0,0,0, ..., 0],

and
F:[fO’fhfZ’ """ ’fm—l]{m
fi is Chebyshev polynomial of second kind such that:

Jfo=1

Ji :2_4(%)

T
f =3—16(1*J+16(i*)
) T T

fj+] :2|:1_2(i*J:|fj _fj—l(i*j
T ’ T
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Moreover, integration of the Chebyshev vector gives:

1F(y>dy= PF () (19)

where P is the operational matrix of integration, r* — the generalized time, and

oy 0 o0 0 0 0 0

2 4

300 Lo o0 0o 0 0 0

8 8

1 iz 0 —é 0 . 0o 0 0 0

P=‘L'* 6 1 e

! 0 0 0 0 ... 0o 1 0 -1
20m—1) 4m—1) 4m—1)

L0 0 0 o0 ... o o0 L 0
. am

Substituting eqs. (17) and (18) in eq. (16) and using eq. (19), we obtained:
DF = ADPF + BEPF

Since the Chebyshev polynomial are independent, equating the coefficients of F(z)
gives the following set of linear algebraic equations:

D — ADP = BEP (20)

Now, we look for the normalized time in which the interface moves a distance 4. The
region (0, 1) is divided into k + 1 equal parts or sub regions. Replacing the space derivative by
using backward operator in the interface condition (12) and integrating it with 1(0) =1, we ob-
tain:

1 T
/T(T)=1+Z[T—Im(y)dy] (21)
0
wherei=0,1, ... ,k

By assuming a fixed value of 7”, the elements of the matrix D whose order is k x m are
computed from eq. (20). Replacing 7; by 37, d;; f;_, and taking 7/t°=1, the eq. (21) becomes:

o hA-D (22)

ote]

which gives the required time in which the phase front is at a distance 4.

Numerical results and discussion

In this section, we present the numerical results of the dimensionless time taken to
cover a distance A(7) and determination of melt fraction with reference to dimensionless time in
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cylindrical and spherical geometries. The computations have been made for fixed values of 7° =
=102and m = 3.

Figures 2 and 3 depict the dependence of interface location on dimensionless time for
three values of Stefan numbers S =0.75, 1.5, 5.0 [8, 12, 18]. It can be seen from the figures that
the velocity of interface is slower for higher values of Stefan numbers for both cylindrical and
spherical cases. Moreover, the velocity of interface decreases as it approaches the centre. One
can also observe that the solidification process is slow in case of sphere than the cylindrical case
for particular value of S. It is also seen from the figures that the dimensionless time for the com-
plete solidification in case of the cylinder is more than that of spherical case. This result is in
complete agreement with the results of Prud’homme et al. [6] and Lin et al. [8].

0.9 0.7
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o o o 06 Cr -=-8=15
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Figure 2. Plot of 7 vs. A(7) for cylindrical Figure 3. Plot of 7 vs. A(7) for spherical
solidification solidification

Figures 4 and 5 represent the dependence of melt fraction on dimensionless time for a
fixed value of Stefan number (S = 5.0) for cylindrical and spherical solidification, respectively.
Actually, melt fraction is defined as the ratio of melted mass and total mass of the phase change
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Figure 4. Plot of melt fraction vs. 7 for cylindrical Figure 5. Plot of melt fraction vs. 7 for spherical

solidification solidification



Rajeev, et al.: A Numerical Study for Inward Solidification of a Liquid Contained ...
THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 365-372 371

material. Thus, the melt fraction is zero when solidification is complete. It is clear from both fig-
ures that total time required to complete solidification is higher for the case of cylinder in com-
parison with total time for the spherical case. The trend of the result in fig. 5 for spherical case is
similar to the result of Assis et al. [16].

Conclusions

We have presented a numerical technique to solve inward solidification problem in cy-
lindrical and spherical geometry. It can be seen that the proposed method is efficient, user
friendly and accurate to determine the solution of moving boundary problems. In view of rapid
convergence of the Chebyshev series of second kind, only a few terms of the series are needed to
give satisfactory results. The authors strongly believes that the proposed method will be helpful
to the engineers who are working in the area of solidification.
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Nomenclature

c — specific heat, [Jkg 'K™'] 0 — normalized temperature distribution
D — coefficient matrix-vector [= (T - To)/AT), [-]

d; — Chebyshev coefficients of matrix D Ao — interface position, [m]

F — Chebyshev matrix-vector P — density [kgm ]

k — thermal conductivity, [WK 'm '] T — dimensionless time (= tkAT/pLR>)
L — latent heat of fusion, [Jkg’l] .

R — position of the fixed boundary, [m] Subscripts

r — position in the solidified region, [m] 0 — at fixed boundary, 7 = R

S — Stefan number (= cAT/L), [-] £ — freezing

T — temperature distribution, [K] )

¢ — time, [s] Superscript

X — normalized position (= r/R), [-] % — generalized

Greek letters / — transpose

a — thermal diffusivity, [m’s™]
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