Pankaj, T.: Elastic-Plastic Transition Stresses in a Thin Rotating Disc with Rigid Inclusion by ...
THERMAL SCIENCE: Year 2010, Vol. 14, No. 1, pp. 209-219 209

ELASTIC-PLASTIC TRANSITION STRESSES IN A THIN ROTATING
DISC WITH RIGID INCLUSION BY INFINITESIMAL DEFORMATION
UNDER STEADY-STATE TEMPERATURE

by

Thakur PANKAJ

Department Applied Science, MIT College of Engineering and Management Bani,
Hamirpur, H. P., India

Original scientific paper
UDC: 539.32:517.95:62-253
DOI: 10.2298/TSCI1001209P

Stresses for the elastic-plastic transition and fully plastic state have been derived
for a thin rotating disc with rigid shaft at different temperatures and results have
been discussed and depicted graphically. It has been observed that at room temper-
ature rotating disc made of compressible material and of smaller radii ratio yields
at the internal surface at a higher angular speed as compared to rotating disc made
of incompressible material. With the introduction of thermal effect rotating disc
yields at the outer surface at a lesser angular speed as compared to rotating disc at
room temperature. The circumferential stress is maximum at the outer surface of
the rotating disc with further increases with the increase in temperature. It means
that angular speed of the rotating disc is less than that of the temperature-loaded
disc in the fully plastic case.
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Introduction

Rotating disc form an essential part of the design of rotating machinery, namely rotors
turbines, compressors, fly wheel, and computer disc drives, efc. The use of rotating disc in ma-
chine and structural applications has generated considerable interest in many problems in do-
main of solid mechanics. Solution for thin isotropic discs can be found in most of the standard
elasticity and plasticity text books [1-4]. Parmaksigoglu, et al. [5] found the “Plastic stress dis-
tribution in a rotating disc with rigid inclusion under a radial temperature gradient under the as-
sumptions of Tresca’s yield condition, its associated flow rule and linear strain hardening. To
obtain the stress distribution, they matched the plastic stresses at the same radius 7 = z of the
disc. Seth’s transition theory [6] does not acquire any assumptions like an yield condition,
incompressibility condition and thus poses and solves a more general problem from which cases
pertaining to the above assumptions can be worked out. It utilizes the concept of generalized
strain measure and asymptotic solution at critical points or turning points of the differential
equations defining the deforming field and has been successfully applied to a large number of
the problems [7-13]. Seth [7] has defined the generalized principal strain measure as:
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¢y = [ [1-2eA 1021ded =—[1-(1-2¢/ )72, (i=1,2,3) (1)
0
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where 7 is the measure.

In this paper, we investigate the problem of elastic-plastic transition in a thin rotating
disc with inclusion under steady-state temperature, by using Seth’s transition theory. Results
have been discussed numerically and depicted graphically.

Governing equations
Consider a thin disc of constant density with central bore of radius a and external ra-

dius b. The annular disc is mounted on a shaft. Let a uniform temperature 8, be applied on the
central bore of radius a of the disc. The disc is rotating with angular veloc-

llssk-ovd ity @ about an axis perpendicular to its plane and passing through the cen-

R WL tre as shown in fig. 1.The thickness of disc is assumed to be constant and
/O is taken to be sufficiently small so that the disc is effectively in a state of
plane stress that is, the axial stress 7, is zero. The displacement compo-

nents in cylindrical polar co-ordinate are given by [7]:

0360 u=r(1-p8);v=0w=dz (2)

where f3 is function of 7 = (x> + y?)"? only and d is a constant.
The strain components for infinitesimal deformation are given by [7, 15]:
_Ou

e ar:[l_(’ﬁ,+ﬂ)]

Ve G ==1-p G)
0

Figure 1. Geometry ey =ey =ely =0

of rotating disc Using eq. (3) in eq. (1), the generalized components of strain are:

¢, =L 1-20B +B) - 112}
n

o =~ 11 =D)"?] @

Ln-a-2aym2
n

€, =

€9 =€9 =€, =0
where ' = dg/dr.
The stress-strain relations for isotropic media is given by [16]:

T, =A8,1, + Jue;— 05, (i,j=1,2,3) )

where [, =¢,, (k=1,2,3)and & =a(34 +2u); a being the coefficient of thermal expansion and 6
is a temperature. Further 6 has to satisfy heat equation which gives [16]:

V0 =0 (6)

Equation (5) for this problem become:
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r = M—# (eVV + 669) +2:uerr - 2#69
A+2u A+2u
2u 2uéE0
Tyy =———— (e, +eyy) +2ueyy — 7
00 )HLZ/J(W 90 ) +2Hegy 1+ (7
Tzz :Tzr :Trf) :T92 =0
From eq. (5), strain components in terms of stresses are obtained as:
1
e, =— (T, —vTy)+ab
7 E ( 99)
1
€0 = z (Tog —vT,.) +ab (8)
v
e, =—— (T, —Ty))+ab
zz E ( I 96)
€y =€, =€, =0
where E = u(3A + 2u)/(A + ul and v =A/2(A + p).
Substituting eq. (4) in eq. (7), the stresses are obtained as:
T, =2—H{3 —2C-2BP+1)-11"22-C)-(2B-1)"2(1-C) —@}
n 2u
Tho =2_,u{3 “2C-2BP+)-11"21-C)-2B-H"?*2-0C) —g} 9)
n H
Tzz =1L :TIQ :TGZ =0
where ' =[P and C =2u/(A + 2u).
The equations of equilibrium are all satisfied except:
L 4T,) - Ty + po?r? =0 (10)
dr
The temperature field satisfying eq. (6) and:
0=06,at r=a,
60 =0 at r=>. (11)
where 6, is constant, is given by: -
0, log—
0= b (12)
log 4
b

Using egs. (9) and (12) in eq. (10), we get a non-linear differential equation in 3 as:
@ - CyB2PRBP +1)— 101 92 _

_ { 0’ b - 1]n/2{1 , IBP(P +1)2 —C)} .
2

28(P +1)—1
ol mBPA-O)]| nCeo,
B +2B -1 {1 1 }} o» (13)
where 6, =0/log(a/b).
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Transition points of 8 in eq. (13) are P — 0 and P — te. P — 0 gives nothing of impor-
tance. The boundary conditions are:

u=0 at r=a and 7,,=0 at r=>. (14)
Solution through the principal stress
It has been shown [7-15] that the asymptotic solution through the principal stress lead

from elastic state to plastic state at the transition point P — te.We define the transition function
R as:

R =2i(T96 +CEO)=3-2C —2B(P +1)—1]"2(1-C)- 2B -1)"22-C)  (15)
L

Taking the logarithmic differentiation of eq. (15) with respect to p and using eq. (13),

one gets:
npw?2r?
e | S RB(P DI 4 1)
1=C ) 2up e +nBPQ2 - C)2B —1)m2
2-C _gp—-cyep -1y - 1%
d(logR) _ _ 2uB” 06
dr r3-2C -2B(P +)-11"2(1-C)-2B-1)"?2-C)
Taking the asymptotic value of eq. (16) as, P — =+, one gets:
d(logR) _ 1 (17)
dr 2-Cyr
Integrating eq. (17), one gets:
R=A4,12-0 (18)
where 4, is a constant of integration.
From eq. (15) and (18), we have:
CéOlog —
Ty :2_#14],,71/(270) _ (19)
" log a
b
Substituting (19) in eq. (10) and integrating, one gets:
r
B C&6, log — i
T, - 2u2-C) A p1e0) b G0, po’r +ﬂ 20)
n(1-C) logg logg 3 r
b b

where B, is a constant of integration, and C§ =2ua(3 — 2C).
From eq. (8), one gets:
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=—=—T, vl +a0=—|T, ———T,, | +ab
" or E( rr 09) E|: rr r_C 90:‘

1-C

u 1 1
ey=—=— Ty - vl )+a0=—|T,) ———T.. |+ab 21
00 B E( 60 rr) El:@@ r_C r1:| ( )

v

e == (T, _T,)+a0=—=C ]

2-CE
where v = (1 — C)/(2 — C)\ is the Poisson’s ratio, and £ = 2u(3 — 2C)/(2 — C) is the Young’s
modulus.

Substituting eqs. (19) and (20) in equation (21), one gets:

(Trr _T99)+a9

zz

@:l 2—“/111"’1/(2’0 3-2C +aE60(2—C)_pa)2r2 +B_1 22)
or E|n 1-C)2-0) log & 3 r
og —
b
u_ 1-C po*rt akf,2-C) B, 23)
r E2-0C) 3 log & r
og —
b
Integrating eq. (22) with respect to » one gets:
1-¢
= 3-— E6,(2 - 23
u=L |2y amc 372C | aB6@-C)r_ pwr’ b ogsl 4 (24)
E|n 1-0)? loo
og —
b
where D is a constant of integration.
Comparing eqgs. (23) and (24), one gets:
1-¢
2—'uA1r2—C 3-2C _
n (1-C)?
2,2 5_ E ) _ _
_po’r 5-4C aEf,r(3 C)_Bll C+(2 C)logr_DE 25)
9 2-C log & 2-C
0og —
b
— 2,3 _
and . 1-C | pw?r’ akb,(2 C)r_B1 (26)
EQC-C)| 3 log
og—
b
Using boundary conditions (14) in eq. (26), one gets:
2,3 _
B, _pwla’ akba2-C) 27)

3 log 4
b

Putting eq. (25) in eq. (20) and using boundary condition (14) and eq. (27), one gets:
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pw?b3 5-4C aEb,b(3-2C)
9 2-C 10gg
b
2,3 - _
D:l pw?a® akhya2-C) ((1-C tlogh |+ (28)
E 3 log & 2-C
og—
b
N 3-2C pw?(a3 —b3)+aE00(2—C)(b—a)
1-0O)2-0) 3 log%

Using egs. (25), (27), and (28)
and displacement as:

in egs. (19) and (20), respectively, we get the stresses

2 _ _ 2(#3 _ H3 — 2 —
T%:pa) 15-4C (1-C)*(r b)_a310g1(1 C) +1 C(b3—a3) B
3r |32-C 3-2C b 3-2C 2-C
(1-C)*(r=b) _a, r@-C)1-C)
_aEb, r r b 3-2C
a
log = b-a)1-C)  _ r (29)
gb + . +(2 C)logb
2 _ — —
SR B e STV 3 SIPER LR Gl [C.ulS) R S RPN I
3r |33-2C b 3-2C
_aB6,2-O) (b _, tlogl—— % jog” (30)
log r b 3r2-0C) b
og—
b
and
- 2 -
u=1 C|po (r3—a3)—aE00(2 C)(r_a) (31)
2-C| 3 log
b
Initial yielding

From eq. (29), it is seen that | T99| is maximum at the external surface (that is at » = b),
therefore yielding will take place at the external surface of the disc and eq. (29) gives:

pw? (b3 —a3)1-C

C)b-a)

+a ko, a- =Y

|T99 r=b ‘

3b

blogé
a
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and the angular velocity necessary for initial yielding is given by:

polb>  32-C) -

Y 3
(1-23)(1-@

and w, = (Q/b)(YIp)"2.

aEf,

a
) b
3
Y [l—jlogb
3 a

a
b

Q2=

30 C)[ (32)

Fully-plastic state

The angular velocity @, for which the disc become fully-plastic (C — 0) at r = a is
given by eq. (29) as:

pw?| 5 a3 a 1 4 .
7, =—/|—(a3-b3)——log—+—(b3 —a?)|——aEl,|=Y
oo, 3b {18( ) -5 loeg V|73
The angular velocity o for fully-plastic state is given by:
pw2b?
Q; = f* = ﬁ L 3 +
Y b a’ I(a a
“1——|-=| = | log—
9 b3 ) 3\b b
N gaE@O 1 (33)

b Y 5 a’ 1(aY a
“1-——|-=| = | log—
9 b3 ) 3\b b
and w,=(Q2,/b)(Y"/p)">.

We introduce the following non-dimensional components as:

r a T, Top . _QEb,

R:—’ R0=_’ o'r= ’ 06=_’ 01 5 ﬁ=£
b b Y Y Y Yb
Elastic-plastic transitional stresses, angular velocity, and displacement from egs. (29),
(30), (31), and (32) in non-dimensional form become:

— ()2 —
(1-0)*  1-C

- _ Q2 [15-4C 1-0)?
¢ 3-2C 2-C

"3R|32-C 3-C

L0 [0-CP®R=D Ry p @O (-R)1=C)
log R, R R (3-20) R

(R? =1)—RJ logR (I—Rg)}—

+(@2-C)log R} (34)

”

33-2C 2C

0,2-C) CI_R+10 R_RologR
logR, R 3R2-C)

:%{15‘4(7 (1-C)R® -1)=R} 1ogRW+1—R3}—

(35)
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i= 1O @ or) -0 D p gy (36)
2-C| 3 log R,
and
0 32-0)  36,0-C)(1-Ry) o
CUA-RHA-C)  1-R} 1
og—
RO

Stresses and displacement for fully-plastic state (C — 0), are obtained from egs. (34),
(35), (36), and (33) as:

Q3 20; R, logR
o R3 -1 —R3lo R+1-R3 L llogR -0 —°" 38
, 3R{ (R )~ g } { g R } (33)

logR,
5 _
02 ~(R3-1- o* R—1+z&10gR+
_r 8 __ 0% "R 3R
% =3r | R3logR 1 loa R (39)
—°—+5(1—R3) 08 Ko | 4 +2logR
% *
i, =—L (R3-R3)- R-R 40
T ( o) logRO( 0) (40)
and Q2= 3R<}331 — 4R0(231 _ 1)
0 (0]
Za-pyy-T0 8% 2 pay T 08T
9 5 5 3

where 0} = (aE0,)/Y"; u, = uE/Y’D.
Rotating disc without thermal effect

The elastic-plastic transitional stresses, displacement, and angular velocity without
thermal effect (6, = 0) are obtained from eqs. (33), (34), (35), and (36) as:

Q2[15-4C (1-C)? 1-C)2 1-C
o =2 (R3-1)-R3logR~—1 +——=(1-R} 42
o 3R{32C32C( )= RyloeR = e oz R 42)

Q2[15-4C 1-C)2-0C)
—~C)R3 -1)—R3logR ——2= =/ 4] _R3 43
g 3R[33 2C( . )~ Rylog 3-2C } )

Q2R3 -R3)(1-C
oL ;)1-C) (44)
32-C)

and
02— 32-0)

fA-RH(-C) )
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The egs. (38), (39), (40), and (41) for fully-plastic state (C — 0) become:

Q3 R} log R
=——| —(R}-1)-———+-(1-R} 46
°=3x |13 ( ) 5 A-Rg) (46)
(9] ;
a,=3—R[(1—Rg)JE—R3 +R}] (47)
02
ﬁf=?f(R3—Rg) (48)
and 2= 3R, (49)
: 2 R} logR,
S(-R})-
9 3
Numerical illustration and discussion
To see the combined effect of angu- 18
lar speed and temperature on the rotat-  «f =
ing disc, the problem has been solved by L
taking the following values: C = 0.00, 14
0.25, 0.75; and 6, = 0.0, 0.25, 0.75. il cEEECAEN,  FESCRTREEE.
Curves have been drawn in fig. 2, be- o= 075,6,=0 -o-C=075,6,-05
tween angular speed Q2 required for "] ZZEI025 0 B
initial yielding and various radii ratio 8 *‘*C:ww
(Ry= a/b). In fig. 2, it has been seen that 6 —_—
at room temperature rotating disc made —
of compressible material and of smaller ‘ e O s TR o .
radii ratio yields at the internal surface 2
required higher angular speed as com-
0 0.1 0.2 0.3 04 0.5

pared to rotating disc made of incom-
pressible material. With the introduction
of thermal effect rotating disc yields at
the outer surface at a lesser angular
speed as compared to rotating disc at

Ry=ab

Figure 2. Angular speed required for initial yielding of
the disc for various radii ratio

room temperature. In fig. 3, curves have been drawn between angular speed (27 = pw2b%/Y)
and temperature (6, = a£6,/Y) required for initial yielding of a rotating disc having radii ratio
(Ry=0.5). It has been observed that the rotating disc without thermal effects and made of com-
pressible material yields at the internal surface at a higher angular speed as compare to rotating
disc made of incompressible material. With the introduction of thermal effect, rotating disc
yields at the outer surface at a lesser angular speed. In fig. 4, curves have been drawn between
stresses at elastic-plastic transition and radii ratio (R = »/b). It is seen that the circumferential
stress is maximum at the internal surface. With the introduction of thermal effect, it is maximum
at the outer surface of the rotating disc. Curves have been drawn in fig. 5, between angular
speed Q/% and various radii ratio (R, = a/b) for the rotating disc to become fully plastic. The ro-
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Figure 3. Relation between _Qil = pa)12b2/y and Figure 4. Stresses at the elastic-plastic transition
0, =aEQ,/Y for yielding through the whole disc of the rotating disc along the radius R =r/b
for Ry=0.5
3
16 .
1o} 8 :
ia 25 el s DI x
= L i
. @ A =075
(e 0 =ogﬁ_- 7 407=05
2 [ w8y = 0264~
10 ; . R ~:3 Oo
761=0 'f,—j, »8, =025
8 15 : /
6 0 =0
4 1
5.
05
0 0.1 02 03 04 05
R, =ahb
0 02 0.4 086 08, _ 1
Figure 5. Angular speed required for the disc to Figure 6. Stress distribution for fully plastic state
be fully plastic at the various radii ration of the disc along the radius R =r/b

tating disc of smaller radii ratio required higher angular speed to become fully plastic in compar-
ison to rotating disc of higher thickness ratio, and this angular speed increases with the increase
in temperature. From fig. 6, it can be seen that, with the introduction of thermal effect, the cir-
cumferential stress is maximum at the outer surface of the rotating disc with further increases
with the increase in temperature. It means that angular speed of the rotating disc is less than that
of the temperature-loaded disc in the fully plastic case.
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Nomenclature

a, b — internal and external radii of the circular c — compressibility factor, [—]
cylinder, [m] K, — constant of integration, [—]
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T e; — stress strain rate tensors, [kgm™'s™] GreeR letters
R — radii ratio (= /b, Ry = a/b), [-] .
u, v, w — displacement components, [m] 0 B tergperature, [°F]
Y — yield stress, [kgm 's ’] o,  — radial stress component (= 7,,/Y), [-]
o, — circumferential stress component (= 7yo/Y), [-]
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