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The variable space grid method based on finite differences is applied to the one-di-
mensional Stefan problem with time-dependent boundary conditions describing the
solidification/melting process. The temperature distribution, the position of the
moving boundary and its velocity are evaluated in terms of finite differences. It is
found that the computational results obtained by the variable space grid method ex-
hibit good agreement with the exact solution. Also the present results for tempera-
ture distribution are found to be more accurate compared to those obtained previ-
ously by the variable time step method.
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Introduction

Moving boundary problems known as Stefan problems involving heat conduction in
conjunction with change of phase are of great interest in numerous important areas of science,
engineering, and industry. Such a process covers a wide range of applications in which phase
changes from liquid, solid, or vapour states. The moving boundary problems occur in many ar-
eas such as the metal, glass, plastic and oil industries, space vehicle design, preservation of
foodstuffs, chemical and diffusion processes, etc. The material is assumed to undergo a phase
change with a moving boundary whose position is unknown and has to be determined as part of
the analysis. Across the phase boundary the heat flux is not continuous, and the heat equation is
replaced by a flux condition which relates the velocity of the phase boundary and the jump of
heat flux across the phase front.

Since moving boundary problems require solving the heat equation in an unknown re-
gion which has also to be determined as part of the solution, they are inherently non-linear. Be-
cause of non-linearity of moving boundary problems they can be solved analytically for only a
limited number of special cases [1]. Due to difficulties in obtaining analytical solution, numeri-
cal techniques are far more common [2-9]. Numerical techniques are specially known to have
difficulties with time-dependent boundary conditions and very small time steps are often needed
for accurate solutions. Solutions of such Stefan problems reported in the literature include lin-
ear, exponential, and periodical variation of the surface temperature or the flux with time [8,
10-13]. Comparison of various numerical methods has been made by Furzeland [11] and
Caldwell et al. [14].
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There are two main approaches in the solution of the Stefan problem. One is the
front-tracking method, where the position of the phase boundary is continuously tracked. An ex-
ample is the heat balance integral method [2], which explicitly tracks the motion of isotherms (the
phase boundary being one of them). An alternative approach, namely, variable grid methods (vari-
able space grid and variable time step) provide a way to track the phase front explicitly [15].

Another approach is to use a fixed-domain formulation. An example is the isotherm
migration method, which uses the temperature as the independent variable [16]. A more com-
mon method is the enthalpy method which uses an enthalpy function together with the tempera-
ture as dependent variable [8, 17, 18]. Alternatively, using a suitable coordinate transformation,
one may immobilise the moving front at the expense of solving a more complicated problem by
a numerical scheme described by Kutluay et al. [6].

The one-dimensional Stefan problem with time-dependent boundary conditions de-
scribing the solidification/melting process is considered in this paper. The variable space grid
(VSG) method is employed in order to determine the evolution of the temperature distribution
and phase boundary during the process. The computational results are compared with the exact
solution and with those obtained earlier by Caldwell ez al. [19] who used the variable time step
finite difference method. Solutions reported in the literature using the VSG method for solving
the moving boundary problem include the one-dimensional Stefan problem describing the pro-
cess of melting of ice [6] and the process of evaporation of droplets [20].

Formulation of the problem

Here we consider the Stefan problem describing a one-dimensional single phase melting
process where the temperature is increased exponentially with time at the fixed boundary x = 0.
The temperature throughout the solid is assumed to remain at the melting point. We are interested
in the temperature distribution u(x, ) in the region 0 < x < s(¢) and in the location of the moving
boundary. Within the dimensionless mathematical model, the function u(x, ¢) is governed by the
heat equation: ou 2u

ot ox?’
subject to the boundary conditions
u(x,t)=e*, x=0, t>0
u(x,t)=1, x=s(), t>0
where « is a physical parameter combining the density, specific heat, and the thermal conductiv-

ity. The location of the moving boundary is given by the heat balance equation known as the
Stefan condition: 1 ds ou

0<x<s(t), t>0 (1

)

ds__ou_(n. 10 3)
o dt Ox
The initial condition is
s(0) =0 “
The exact solution of this problem is given by:
u(x, 1) =e¥=x 5)
s(t)y=at

We use the exact solution (5) to initialise our numerical schemes and to compare it
with our computational results.
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Here we deal with the finite difference solution of the dimensionless model problem
given by eqgs. (1)-(4). Several numerical techniques based on finite differences and finite ele-
ments have been successfully applied to the treatment of the Stefan problem [4, 5, 21-23]. In this
paper, in order to determine s(¢) for > 0 and u(x, ¢) for 0 <x < s5(¢) and > 0, we employ a variable
space grid technique.

A variable space grid (VSG) method

The number of space intervals between a fixed boundary x = 0 and a moving boundary
x = s(?) is kept constant and equal to N, and thus the moving boundary always lies on the N-th
grid. Before writing the finite difference form of eq. (1), it is necessary to take into account the
continuous change in the nodal positions due to the boundary movement. The following expres-
sion applies at the i-th grid point:

o _ou 2x| o ©
ot|; ©ox|, ot|; ot|,
and the node x; is moved according to the expression:
dx  x; ds
Z-4aZ (7)
de  s(¢) dt

in which the suffices ¢, 7, and x are to be kept constant during the differentiation process and

omitted for clarity below. By substituting eqs. (1) and (7) into eq. (6), the following equation is

obtained: ou x, ds du o2y
= —+a

ot s dt ot ox2’

subject to the boundary conditions (2). Equation (3), subject to initial condition (4), remains un-
changed. One should note here that the grid size Ax = s(f)/N varies with time ¢ as the interface
moves, since the number N of grid points is constant.

The temperature gradient at the moving interface [x = s(f) = NAx] is given by the fol-
lowing three point backward scheme [11]:

0<x<s(f), t>0 (8)

—4
oul - _Buy 8y YUy gy ©9)
Ox|,_, 2Ax

Using a forward difference approximation for the time derivative and a central differ-
ence approximation for the space derivative, the discretization of eq. (8) can be expressed as:

kxi m‘s.'m ka
Ui mp1 = U +— (i1 m _ui—l,m)+_2(ui+l,m =20 1y + Uy ) (10)
thsm hm
where u; = u(x; 1, ), 80 = 5(t0), S = Sy — Sp)/AL X,y = Thy, b =ty + mk, b is the space grid

size Ax at m'" time step, k(=A¢) — the time step, and ¢, — the time at which the numerical process is
initialised. A truncation error for this scheme is O(k) + O(%2). The schematic diagram in fig. 1
demonstrates the construction of the grids for the finite difference solution.

The temperature distribution at the origin is easily obtained using the boundary condi-
tion (2) at x = 0, which in discretized form is:

ui,m zeatm’ i=0: m:O’ 1, 2; (11)

For the temperature distributionat 0 <x <s(?) i =1,2,..., N—-1,m=0,1,2,...,) eq.
(10) is to be used. The boundary condition (2) at x = s(¢) is:
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t=t,
Ax Ax= s()/N
t=0 b>h s>t pigure 1. Schematic di to illustrate th
=0 i=1 i=2 i=N=2 i=N—=1i=N igure . chema lC. l1agram Ol. us.rae (Y
construction of the grids for the finite difference
x=0 x=8(t) .
solution
t=1,
ax
t=0
i=0 =1 i=2 i=N-2 i=N-1 i=N
x=0 x= s(ty)
un,=1, i=N m=0,1,2,.. (12)
Using eq. (9), the Stefan condition (3) atx =s(¢) (i = N) in terms of finite differences is:
ka
Simel =Sm ——2 (314N’m —4uN_1,m +uN_2’m), m=0,1, 2, ..., (13)
m

and the initial condition (4) becomes:
5o=0 (14)

On the basis of the updated interface location s, , the updated grid size 4, is calcu-
lated at each time step as /., = s,,,.,/N.

Numerical results and discussion

In this section we present the computational results obtained by using the VSG
method applied to the one-dimensional Stefan problem describing the melting process of a
solid. We compare our computational results with the exact solution for & =2 and 10. Also the
present results for temperature distribution are compared with those obtained earlier by
Caldwell et al. [19] for a = 10, who use the variable time step finite difference method. In the
VSG method used in the present study, the numerical process is initialised using the exact solu-
tion (5) of the Stefan problem defined by egs. (1)-(4). The initial time #, = 0.01 which according
to eq. (5) corresponds to the initial position of the moving boundary s(¢,) = 0.02 and 0.1 for o =
=2 and 10, respectively, is used. We investigate the evolution of the temperature distribution,
the position of the moving boundary and its velocity in a time interval from #=1#,=0.01 to 0.5.
Applying the VSG method a grid size A, (= Ax) = s(#)/N (N =10 is also adopted) varies between
0.002 and 0.1 for & =2 and between 0.01 and 0.5 for & = 10, since we are analyzing the move-
ment of the phase boundary position s(7) between 0.02 and 1 for @ =2 and between 0.1 and 5 for
o =10. The time steps k (= A$)=0.000001 and 0.000002 are used for o =2 and 10, respectively.
Such a choice of time step and grid size guarantees stability of our difference schemes applied
within the VSG method.

We first present the results obtained for = 10. The present computational results for
the temperature distribution u(x, 7) together with the exact solution are shown in tab. 1. Good
agreement between the present results and exact solution is seen. Furthermore, the accuracy of
the present results for the temperature distribution u(x, #) is about one order of magnitude better
than the accuracy of the results obtained earlier in [19] (shown in tab. 2) using the variable time
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Table 1. Temperature distribution u(x, r) obtained using the VSG method compared with the exact
solution for o =10

0.0 2.71828183 2.71828183 0.0
0.1 245974218 2.45977508 0.00133752
0.2 222577016 2.22585214 0.00368308
0.3 2.01403256 2.01417512 0.00707784
0.4 1.82241728 1.82262844 0.01158547
0.1 0.5 1.64901245 1.64929771 0.01729585
0.6 1.49208743 1.49245062 0.02433514
0.7 1.35007570 1.35051958 0.03286735
0.8 1.22155926 1.22208609 0.04310907
0.9 1.10525462 1.10586654 0.05533398
1.0 1.0 1.0 0.0
0.0 20.08553692 20.08553692 0.0
0.1 14.91021931 14.90341793 0.04563658
0.2 11.06523546 11.05829865 0.06272945
0.3 8.20937495 8.20522981 0.05051827
0.4 6.08867860 6.08825990 0.00687717
0.3 0.5 4.51419571 4.51747355 0.07255914
0.6 3.34539139 3.35195402 0.19578520
0.7 247777425 2.48714146 0.37662554
0.8 1.83367515 1.84545271 0.63819354
0.9 1.35537724 1.36932128 1.01831760
1.0 1.0 1.0 0.0
0.0 148.41315910 148.41315910 0.0
0.1 90.89914687 90.63872426 0.28731937
0.2 55.60565785 55.35478380 0.45321122
0.3 33.97452783 33.80621378 0.49787903
0.4 20.73231873 20.64609438 0.41763032
0.5 0.5 12.63416185 12.60896046 0.19986890
0.6 7.68612410 7.70053072 0.18708607
0.7 4.66455051 4.70285980 0.81459562
0.8 2.81941818 2.87212546 1.83513150
0.9 1.69152627 1.75406136 3.56515970
1.0 1.0 1.0 0.0
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Table 2. Temperature distribution u(x, ¢) as calculated in [19] using the variable time step method and ex-
act solution for o =10

0.0199957| 1.105159| 1.104697| 0.041821

0.2555534| 11.68015| 11.65265| 0.235998| 9.607639| 9.540384| 0.704951| 7.902224| 7.811006| 1.167814
0.2946605| 17.27035| 17.22920| 0.238839| 14.20695| 14.10607| 0.715153| 11.68634| 11.54907| 1.188581
0.5095832| 148.1550( 147.7959| 0.242970| 121.8889| 120.0050| 1.569851| 100.2791| 99.07057| 1.219868
0.5486411| 218.9491| 218.4181| 0.243112| 180.1327| 178.8256| 0.730936| 148.1975| 146.4100| 1.220887

step method. In fig. 2 the computational results and exact solution for moving boundary position
versus time are shown. In tab. 3 the computational and exact values for boundary position and its
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Figure 2. Position of moving boundary vs. time

for o = 10
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Figure 3. Position of moving boundary vs. time for

a=2

velocity are shown together with percentage errors. Reasonably good agreement between the
present results and the exact solution is seen.

In tab. 4 is shown a comparison of u(x, 7) determined from the exact solution and from
the finite difference calculations for @ =2. Very good agreement between the present results and

Table 3. Position of moving boundary and its velocity obtained using VSG method compared with
exact solution for o =10

B

0.01 0.1 0.1 0.01 | 9.99966996 | 0.00330040
0.02 | 0.19999399 0.00300500 0.2 0.02 | 9.99903562 | 0.00964380
0.05 | 0.49990592 0.01881600 0.5 0.05 | 9.99450640 | 0.05493600
0.1 0.99930086 0.06991400 1.0 0.1 9.97993878 | 0.20061220
0.2 | 1.99496049 0.25197550 2.0 0.2 9.92856643 | 0.71433570 109
0.3 ] 2.98409422 0.53019267 3.0 0.3 9.84945140 | 1.50548560
0.4 | 3.96387752 0.90306200 4.0 0.4 | 9.74104545 | 2.58954550
0.5 4.93118458 1.37630840 5.0 0.5 9.59898056 | 4.01019440
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Table 4. Temperature distribution u(x, 7) obtained using VSG method compared with
exact solution for o =2

0.0 1.2214027582 1.2214027582 0.0
0.1 1.1972175448 1.1972181266 0.0000485920
0.2 1.1735111896 1.1735123676 0.0001003853
0.3 1.1502742116 1.1502759994 0.0001554206
0.4 1.1274973175 1.1274997275 0.0002137510
0.1 0.5 1.1051713977 1.1051744418 0.0002754433
0.6 1.0832875230 1.0832912124 0.0003405778
0.7 1.0618369408 1.0618412864 0.0004092499
0.8 1.0408110716 1.0408160839 0.0004815701
0.9 1.0202015058 1.0202071951 0.0005576653
1.0 1.0 1.0 0.0
0.0 1.8221188004 1.8221188004 0.0
0.1 1.7160228294 1.7160343226 0.0006697538
0.2 1.6161015667 1.6161261251 0.0015195844
0.3 1.5219957400 1.5220346224 0.0025546336
0.4 1.4333669468 1.4334211643 0.0037823844
0.3 0.5 1.3498964432 1.3499668167 0.0052129822
0.6 1.2712840033 1.2713712143 0.0068596032
0.7 1.1972468440 1.1973514790 0.0087388738
0.8 1.1275186122 1.1276412020 0.0108713483
0.9 1.0618484308 1.0619894849 0.0132820541
1.0 1.0 1.0 0.0
0.0 2.7182818285 2.7182818285 0.0
0.1 2.4597424933 2.4597750458 0.0013233921
0.2 2.2257706279 2225852852 0.0036595986
0.3 2.0140330655 2.0141750415 0.0070488412
0.4 1.8224177583 1.8226283431 0.0115539052
0.5 0.5 1.6490128544 1.6492976074 0.0172651086
0.6 1.4920877489 1.4924505088 0.0243063260
0.7 1.3500759228 1.3505194642 0.0328422797
0.8 1.2215594026 1.2220859670 0.0430873484
0.9 1.1052546863 1.1058664094 0.0553161914
1.0 1.0 1.0 0.0
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Table 5. Position of moving boundary and its velocity
obtained using the VSG method compared with the

exact solution for o =2

the exact solution is seen. The computa-
tional results and exact solution for
moving boundary position vs. time are

s [t] plotted in fig. 3. In tab. 5 the boundary
g VSG Error [%] Exact value positiop anfi its velocity determined us-
ing finite differences are compared with
0.01 | 0.02 - 0.02 the exact solution. Again, good agree-
0.02 | 0.0399999484 | 0.0001291125 0.04 ment between the present results and ex-
act solution is evident.
0.05 | 0.0999991859 0.0008140748 0.1 C]eaﬂy, our Computationa] results for
0.1 | 0.1999936232 | 0.0031884082 0.2 the worse case tabulated (corresponding
to ¢ =0.5) with a = 10 are approximately
0.2 | 0.3999509301 | 0.0122674694 0.4 within 4% or less of the exact values.
0.3 0.5998399761 0.0266706493 0.6 Since the values of a for almost all the
materials of practical interest are less
0.4 | 0.7996321205 | 0.0459849380 0.8 than 5, the VSG method may be assumed
0.5 | 0.9993009904 | 0.0699009641 1.0 sufficiently accurate for most practical
applications. Also the VSG method has
’ ds/ds been earlier successfully applied to the
VSG Error [%] Exact value Stefan problem with Neumann boundary
condition at x = 0 by Caldwell et al. [20]
0.01 | 1.9999977517 0.0001124500 o .
describing the evaporation of droplets
0.02 | 19999920331 | 0.0003983431 and a time-dependent boundary condi-
0.05 | 1.9999514832 | 0.0024258386 tionatx=0by Kutluay et al. [6] describ-
ing the process of melting of ice.
0.1 1.9998113373 | 0.0094331333 On the basis of the results obtained
02 | 1.9992818233 | 0.0359088341 2.0 we can conclude that the VSG method,
which uses constant time step, can be
0.3 | 19984515198 | 0.0774240088 successfully employed to the Stefan
04 | 1997347122 | 0.1326243919 problem describing a one-dimensional
single phase melting process where the
0.5 | 1.9959886398 | 0.2005680093 temperature is increased exponentially

at the fixed boundary x = 0. Although
the exponentially increasing tempera-

ture at the fixed boundary x = 0 makes this problem more difficult than the problem with time-in-
dependent boundary conditions successfully treated earlier [20] using the VSG method, this
method again proves to be very efficient and accurate.

Conclusions

We report on the implementation of the variable space grid method for the solution of
the Stefan problem describing the melting process of a solid. Very good agreement between the
computational results obtained using the VSG method with the exact solution is evident. We
find that the accuracy of the VSG results for & =2 is much better than the accuracy of the compu-
tational results achieved for o = 10. Since the values of « for almost all the materials of practical
interest are less than 5, the VSG method may be assumed sufficiently accurate for most practical
applications. One benefit of the VSG method is that the computation time is comparatively short
and so it is possible to achieve higher accuracy by refining the mesh size. Furthermore, this
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method is shown to provide more accurate solutions of the Stefan problem treated in the present
work compared to those obtained using the variable time step method [19]. The good agreement
achieved in comparison with the analytical solution gives us confidence in the use of this vari-
able space grid approach for other Stefan problems with time-dependent boundary conditions.
This is important for those cases where analytical solutions are not available.
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