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Elastic-plastic transitional stresses in a transversely isotropic thick-walled cylin-
der subjected to internal pressure and steady-state temperature have been derived
by using Seth’s transition theory. The combined effects of pressure and temperature
has been presented graphically and discussed. It has been observed that at room
temperature, thick-walled cylinder made of isotropic material yields at a high pres-
sure at the internal surface as compared to cylinder made of transversely isotropic
material. With the introduction of thermal effects isotropic/transversely isotropic
cylinder yields at a lower pressure whereas cylinder made of isotropic material re-
quires less percentage increase in pressure to become fully-plastic from its initial
yielding as compared to cylinder made of transversely isotropic material.
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Introduction

Thick-walled circular cylinders are used commonly either as pressure vessels intended
for storage of gases or as media transportation of high pressurized fluids. The problems of
thick-walled cylinder under internal pressure for isotropic material were discussed by many au-
thors [1-4]. In analyzing the problem, these authors used some simplifying assumptions. First,
the deformation is small enough to make infinitesimal strain theory applicable. Second, simpli-
fications were made regarding the constitutive equations of a material like incompressibility and
yield criterion. Incompressibility is one of the most important assumptions, which simplifies the
problem. In fact, in most of the cases, it is not possible to find a solution in closed form without
this assumption. Seth’s transition theory does not require these assumptions and thus can be
used to solve a more general problem. Seth’s transition theory utilizes the concept of general-
ized strain measure and asymptotic solution through the transition points of differential system
defining the deformed field and has successfully been applied to a large number of problems in
plasticity, [5-17]. Gupta et al. [8] solved the problem for transversely isotropic cylinder under
internal pressure by using finite strain theory and Seth’s transition concept, which not only gives
the results as obtained by classical theory as a particular case but also includes the effect of com-
pressibility of the material.

Seth [16] has defined the generalized principal strain measure as:
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where 7 is the measure and e are the Almansi finite strain components.

In this paper, the problem of elastic-plastic stresses in a transversely isotropic
thick-walled cylinder under internal pressure and steady-state temperature is investigated. Re-
sults have been presented graphically and discussed.

Governing equations

Consider a thick-walled circular cylinder of internal and external radii a and b respec-
tively, subjected to internal pressure p and temperature @ applied at the internal surface. The
components of displacement in cylindrical polar co-ordinates are given [18] by:

u=r(1-B8); v=0;, w=dz 2)

where S is position function, depending on » = (x> + %) only, and d is a constant.
The finite strain components are given by Seth [16] as:
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e =2 l1-1-d)]

ed =el =ed =0
where ' = dB/dr and meaning of superscripts " is Almansi.
By substituting eq. (3) into eq. (1), the generalized components of strain are:
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The stress-strain relations for transversely isotropic material are given by [19]:
Trr :Cllerr + (Cll _2C66 )690 + Cl3ezz _ﬂl@
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Tzr :TGZ :Tr9 =0
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where 8, = Cyja; +2C,a,, B,= Cppa; +(Cyy + C3)a,, G are elastic parameters = temperature
change, a, is the coefficient of linear thermal expansion along the axis of symmetry, and o, — the
corresponding quantities orthogonal to axis of symmetry.

By substituting eqs. (4) into egs. (5), one gets:

T, = S ey D 0y Ce 0
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Equations of equilibrium are all satisfied except:

%(TWH = g %)

The temperature field satisfying Fourier heat equation V2@ and
O =0, at r=a,
®O=0 at r=>5,

where @, is constant, given by [19]:

6=—b (8)

By substituting egs. (6) and (8) into eq. (7), one gets a non-linear differential equation
with respect to 3:

nPC, "1 (1+ P)r! %z—nPC”ﬁ”(H-P)” —(Cy, =2C4)nPB" +2C[1-p A+ P)"] -
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where 7B8'=pP and 50 =(©,)/log(a/b) and rB' =B P (P is function of f and 3 is function of r).
The transition points of 8 in eq. (9) are P — —1 and P — £ «.The boundary conditions
are given by:
T,=-patr=a

10
T,=0 atr=>b (10)
The resultant force normally applied to the ends of cylinder is:
b
2n(rT_dr=ma’p (11)

Solution through the principal stress

It has been shown that the asymptotic solution through the principal stress [5-17] leads
from elastic to plastic state at the transition point . If the transition function is defined as:

R=2(Cy, - Cse) tnCse,, —nT,, —nf,0 = B"[C};—2Cq + Cy (1 + P)'] (12)

and by taking the logarithmic differentiation of eq. (12) with respect to r, one gets:
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nB"P[C,, —2C¢ +C,; 1+ P)"1+nC, P(1L+ P)"! pr+ dr

d dB

F. 13
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By substituting the value of dP/df from eq. (9) into eq. (13), one gets:

2CB"[1— (1+ P)" - nO, [, +(ﬁ1ﬂ2>log§

i(log R)= (14)
dr 1B7[Cy —=2Cg +C,, 1+ P)"]

Asymptotic value of eq. (14) as P — £ = is:

d 2C
—(logR)=—-—5% 15
dr( gk) rCy, (13)
By integrating eq. (15), one gets:
R=K,r G (16)

where K| is a constant of integration, which can be determined by the boundary condition and
C, =2C/C,,. By substituting eq. (16) into eq. (12), one gets:

K
T, =Cy — By log— - =L 1= (17)
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where C; = [2(Cy, — Cg) + ncjze..)/n and B :ﬂIBO'
By applying boundary conditions (10) in eq. (17), one gets:

a a
p— B log— P‘ﬂolOg;
K, =nb¢ ——L and C;=——= (18)

Cl Cl
b -1 b -1
a a
By substituting the value of K, and C; into eq. (17), one gets:

a
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By substituting eq. (19) in eq. (7), one gets:

a
P— ﬂO 10g Z b Ci 2
Tpy =———2|1-(1-C, )H —ﬁo(lﬂog—J (20)
b 1 r b
- -1
2)
The axial stress is obtained from eq. (6) as:
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By applying the condition (11) into eq. (21), the axial strain is given by:

a
) ‘12C13(P_ﬁ0 logj
a*p b N
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b
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By substituting eq. (22) into eq. (21), one gets:
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From eq. (19) and (20), one gets:

a
P B logz b ¢
N a9 1) ) .

BE

It is found that the value of |Tp, — T, | is maximum at » = @, which means that yielding
of the cylinder will take place at the internal surface. Therefore:

a
p_ﬁ() logz b G
|T99 ~ T, P | Cl(_) - Bo
b\" a
a

where Yis the yielding stress. The relation between pressure and temperature for initial yielding
is given by:

Initial yielding

Y (25)
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Bo
1+—= el
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By substituting eq. (26) into eqgs. (19-21), one gets the transitional stresses as:
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where P, =p/Yandﬂ0/Y=ﬂ150/Y.
Equations (27) define elastic-plastic transitional stresses in a thick-walled cylinder un-

der internal pressure and temperature ©,,.
For fully plastic state (C, — 0), eq. (24) becomes:

a
P~ B, log i
[Too =T, =|——5—~Bo=Y"(say) (28)
log —
a
From eq. (28), one gets: b
p=Y"log— (29)
a
By substituting eq. (29) into egs. (19-21), one gets stresses for fully plastic state:
o= Ly =-lo b
"oy 8 r
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Isotropic case: For isotropic materials, the material constants reduce to two only [21],
ie. C;1=Cy=0C5,Ch=0Cy,=C;3=C5=Cy3=C;,=C,,—2C¢, and o, =, = ct; =a. In term
of constants A and y, these can be written as:

1
Cp=4, Cg :E(C” -Cp)=u and Cj; =1 +2u (1)

For isotropic materials eqgs. (19-21) become:

p—Pylogs ¢
T -17¢ " b {2—(2—@(”] }

r
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b
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where ¢ =2u/(1+2u).
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From eq. (32), one gets:

PPy log :
Too =T, =|———b c(é] ~ B, (33)
LA
H

It is found that the value of (T, — T, | is maximum at 7 = g, which means that yielding
of the cylinder will take place at the internal surface. Therefore:

(o)
a

The relation between pressure and temperature for initial yielding is given by:

Bo
1+— c
Py () _y|_Popel
Pl_Y Y {(aj 1] Ylogb (35)
(:)

By substituting eq. (35) into eq. (32), one gets the transitional stresses:

a
P B IOgZ c[b

|Too = T, ;j = Bo| =Y (say) (34)
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For fully plastic state (c — 0), eq. (33) becomes:

a
r—Bo log;
|T99 _Trr r=b = —b _ﬁO EY*(Say) (37)
log —
a

By substituting eq. (37) into eq. (32), one gets stresses and pressure for fully plastic
state (¢ — 0):

Tr __1og?
Y gr
TLY:]_logé

r 38
1 .
Yy 2 r
p:Y*logé

a

These equations are the same as obtained by Nadia [16] and Hill [20].
Results and discussion

As an numerical illustration, the values of pressure P required for initial yielding P,
and fully plastic state P;at different temperature has been given in tab. 1 and fig. 1. It can be seen
that at the room temperature thick-walled cylinder made of isotropic material having thickness
ratio b/a = 4 yields at the internal surface at high pressure as compared to cylinder made of
transversely isotropic material where as thick-walled cylinder having smaller thickness ratio
yields at a lower pressure. With the introduction of thermal effects, cylinders made of both iso-
tropic transversely isotropic material yields at a lower pressure. From tab.1, it has been observed
that a thick-walled cylinder made of transversely isotropic material requires larger increase in
pressure to become fully-plastic from its initial yielding, proportional to the increase in tempera-
ture ratio 3,/ Y. This increase in pressure increases with the increase in temperature and thickness
ratio, as well. It means that at room temperature, thick- -walled cylinder made of isotropic mate-

Transversely isotropic material (magnesium, C, = 0.63)

/4 ---------- Isotropic material (brass, ¢ = 0.50)

Figure 1. Pressure required for
initial yielding of thick-walled
cylinder at different
temperature

0.4
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.5 0.55 0.6 0.650.7 0.75 0.8
ByY
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Table 1. The pressure required for initial yielding (;) and fully plastic state (Py)
at different temperatures (3,/Y)

P, | 05616 | 0.4958 0.4629

2 23.418 39.785 49.713
Pe | 0.6931 | 0.6931 0.6931
P, | 0.7928 | 0.6399 0.5635

3 38.567 71.671 94.459
Py | 1.098 1.098 1.098

4 | P; | 09245 | 0.6937 0.5782 49.945 99.854 139.76

0.5857 | 0.5321 0.5053
2 19.116 32.477 40.581
P | 0.6931 | 0.6931 0.6931

P, | 0.8453 | 0.7186 0.6553
3 31.950 59.375 78.667
Py | 1.098 1.098 1.098

1.000 0.8069 0.7103 41.783 83.535 116.92

rial is to withstand a greater pressure to initiate yielding at the internal surface as compared to
thick- -walled cylinder made of transversely isotropic material and with the introduction of ther-
mal effect, they yield at a lower pressure whereas cylinder made of isotropic material requires
smaller increase in pressure to become fully-plastic from its initial yielding. In figs. 2 and 3,
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0.2
0.1 Figure 2.
0 Elastic-plastic
—0.1 1 transitional stresses
0.2 1 for a thick-walled
03 cylinder under
0.4 internal pressure at

0.5 & I different
temperatures

a,

Transversely isciropic matenal (magnisium, G, = 0.63)
07 - Isotropic material (brass, ¢ = 0.50)

0.6




THERMAL SCIENCE: Vol. 13 (2009), No. 4, pp. 107-118 117

elastic-plastic transitional stresses and stresses for fully-plastic state have been drawn with radii
ratio R = r/b. It has been observed from fig. 3 that for fully-plastic state, radial and circumfer-
ential stresses are independent of thermal effects.

Transversely isotropic maierial (magnesium, C; = .63}
-~ |sotropic material (barss, ¢ = 0.50)

0.98
0.88
0.78
0.68
0.58
0.48

Fully-plastic stresses

0.38
0.28
0.18
0.08
=0.02

5 06 07 08 08
3 R=rb

.
O 05 A6 0.7 028 04 0

-0.12 R =t

—0.22
—0.32
—0.42
—0.52
—0.62
-0.72

Figure 3. Fully plastic stresses for a thick walled cylinder under internal pressure at different
temperatures

Conclusions

It has been observed that at room temperature, thick-walled cylinder made of isotropic
material yields at a high pressure at the internal surface as compared to cylinder made of trans-
versely isotropic material whereas thick-walled cylinder having smaller thickness ratio yields at
a lower pressure. With the introduction of thermal effects isotropic/transversely isotropic cylin-
der yields at a lower pressure whereas cylinder made of isotropic material requires less percent-
age increase in pressure to become fully-plastic from its initial yielding as compared to cylinder
made of transversely isotropic material. Radial and circumferential stresses are independent of
thermal effects for fully-plastic state.
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Nomenclature

a, b — internal and external radii of the circular K, — constants of integration, []
cylinder, [m] p — internal pressure [Pa]

c — compressibility factor, [—] R — radii ratio (= #/b), [-]
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R, — radii ratio.(= a/b), [-] s o,  — radial stress component (= 7,,/Y), [-]

Tyj e; — stress strain rate tensors, [kgm s 7] oy — circumferential stress component (=Tg/Y),
u, v, w — displacement components, [m] -]

Y — yield stress, [ke] o, — axial stress component (=7,,/Y),

Greek letters

®,0 — temperature, [K]
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