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The boundary layer steady flow and heat transfer of a viscous incompressible fluid
due to a stretching plate with viscous dissipation effect in the presence of a trans-
verse magnetic field is studied. The equations of motion and heat transfer are re-
duced to non-linear ordinary differential equations and the exact solutions are ob-
tained using properties of confluent hypergeometric function. It is assumed that the
prescribed heat flux at the stretching porous wall varies as the square of the dis-
tance from origin. The effects of the various parameters entering into the problem
on the velocity field and temperature distribution are discussed.
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Introduction

The analysis of the flow through porous medium has become the basis of several sci-
entific and engineering applications. Flow and heat transfer phenomena over a moving flat sur-
face are important in many technological processes, such as the aerodynamic extrusion of plas-
tic sheet, rolling, purification of molten metals from non-metallic inclusion by applying
magnetic field, and extrusion in manufacturing processes. In continuous casting, that is the pro-
cess consists of pouring molten metal into a short vertical metal die or mould (at a controlled
rate), which is open at both ends, cooling the melt rapidly and withdrawing the solidified prod-
uct in a continuous length from the bottom of the mould at a rate consistent with that of pouring,
the casting solidified before leaving the mould. The mould is cooled by circulating water around
it. The process is used for producing blooms, billets and slabs for rolling structural shaped, it is
mainly employed for copper, brass, bronze, and aluminum and also increasingly with cast iron
(C. 1) and steel.

However, in real situation one has to encounter the boundary layer flow over a stretch-
ing sheet. For example, in a melt-spinning process, the extradite is stretched in to a filament or
sheet while it is drawn from the die. Finally, this sheet or filament solidifies while it passes
through controlled cooling system.

Sakiadis [1] first investigated the boundary layer flow of a viscous fluid due to the mo-
tion of a plate in its own plane and Erickson et al. [2] and Gupta et al. [3] extended this problem
to the case for which suction or blowing existed at the moving surface. Crane [4] and Mc
Cormack et al. [5] studied the boundary layer flow of a Newtonian fluid caused by stretching of
an elastic flat sheet which moves in its own plane with the velocity varying linearly with the dis-
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tance from a fixed point due to the application of a uniform stress. The uniqueness of the exact
analytical solutions followed by two different approaches [4, 5] was proved simultaneously by
McLeod et al. [6] and Troy et al. [7]. Both the basic flow and the heat transfer problems for lin-
ear stretching of the sheet have since been extended in various ways. One may, for example, re-
fer to Vleggaar [8], Soundalgekar et al. [9], Carragher ef al. [10], Dutta [11], and Chen ef al.
[12]. Afzal et al. [13], Kuiken [14], and Banks [15] considered the power law stretching of the
plate (uax™). Banks and Zaturska [16] considered the eigenvalue problem for boundary layer
over the stretching plate. The hydromagnetic flow and heat transfer case for linearly stretching
plate has been studied by Chiam [17] and Abo-Eldahab ez al. [18].Unsteady boundary layer flow
due to stretching sheet has been considered by Shafie, et al. [19], Kechil ef al. [20], and Liao
[21].

These all writers have completely neglected the radiative heat and dissipation due to
viscous. Whenever the temperature of surrounding fluid is high, the radiation effects play an im-
portant role and this situation does exist in space technology. In such cases one has to take into
account the effects of radiation and free convection. In steady flows, such studies presented by
Cess [22], Arpaci [23], Cheng et al. [24], Hossain et al. [25, 26], and Hossain et al. [27]. For an
impulsively started infinite vertical isothermal plate, Ganeshan et al. [28] studied the effects of
radiation and free convection, by using Rosseland approximation, and Brewster [29]. Recently,
Rashad [30] has studied, numerically, the radiative effects on heat transfer from a stretching sur-
face in a porous medium neglecting the viscous dissipation. In this paper the study of radiation
and viscous dissipation effects over a stretching surface subjected to variable heat flux in pres-
ence of transverse magnetic field is presented and it has been found that these parameters do af-
fect the plate temperature (recovery temperature).

Governing equations and analysis

Consider a steady two-dimensional incompressible viscous laminar flow of an electri-
cally conducting fluid in the presence of a magnetic field B and radiation transfer over a moving
sheet. The x-axis is chosen along the sheet and the y-axis perpendicular to it, the applied mag-
netic field B, is along y-axis. The sheet issues from a thin slit at the origin (0, 0). It is assumed
that the speed of a point on the plate is proportional to its distance from the slit, and the boundary
layer approximations still applicable. It is also assumed that the prescribed heat flux at the
stretching wall varies as the square of the distance from the origin. The steady-state boundary
layer equations of mass, momentum, and energy governing the flow are:

du  ov _, (1)
ox 0y
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where u and v are the fluid velocities in the x- and y- directions, respectively, 7 is the tempera-
ture, 9 — the kinematics viscosity, p — the density, k — the thermal conductivity, ¢, — the specific
heat at constant pressure, and g, — the radiative heat flux in the y-direction.



THERMAL SCIENCE: Vol. 13 (2009), No. 2, pp. 163-169 165

The appropriate boundary conditions for the problem are:
u=cx, v=-v, a—Tzsz, at y=0
oy 4
u=0, T=T,, y—oo
where 4 and ¢ are given positive constants.
We assume the Rosseland approximation [29] for radiative heat flux, which leads to:

_ 4o oT*
3" Oy

I

where o is the Stefan-Boltzmann constant and k™ is the mean absorption coefficient.

If the temperature differences within the flow are sufficiently small such that 74 may
be expressed as a linear function of the temperature, then the Taylor series for 74 about 7., after
neglecting higher order terms, is given by:

T4 =4T3T - 374 (5)

The solution of egs. (1) and (2), satisfying the boundary conditions (4) is:
u=cxf'(n),
v=—8cf(m),

Ic
= 6
n 9)’ (6)

where prime denotes differentiations df/dn, and

S =a+beon,

2 _ 2
a M b:—l, a:l+,//l +4(1+ M) 7

o a 2

M = 6B /pc (the magnetic parameter), and 2 = v,/+/9c (the injection parameter).
In order to solve eq. (3) we assume:

T=T, + A‘/Ex2 o(n) ®)
c
By using egs. (5), (6), and (8), eq. (3) takes the following form:

(1+%)0"+Prf9’—2Prf’9+PrEc(f”)2 =0 )

subject to the boundary conditions
0'=1 at n=0
o (10)
6()=0
where Ec =c32/A4c, 912 is the Eckert number, Pr = p9c /k is the Prandtl number, and N =
= K"k/40T ?is the radiation parameter.
If we assume 1 + 4/3N = 3, then to obtain the solution of eq. (9), we introduce a new
variable & as follows:
=———e™ 11
S Y (11)
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Hence the eq. (9) reduces to:
fﬁJ{l—Pr(l—ﬂzj—é};—eJrzG:—Qé (12)

a
where O = Eca*f/Pr.

The corresponding boundary conditions are:

. Pr :cﬁ _oy—
9(5— azﬂJ br and 0(£=0)=0 (13)

The solution of eq. (12) satisfying boundary conditions (13) in terms of the confluent
hypergeometric function F(a ,c, x) [31] is given by:

e )
- 2(7/+1)+C2§ IF[Prl = 2 Prl 1 = +L& (14)

wherey =1—Pr[l — (M/a?)] and assuming (afB/Pr)—QPr/a?pB(y +1) = L,, the constant C, is
given by the following equation:

Pr Pr[l—aﬂz) , M M Pr
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Now, 0 in terms of variable  may be expressed as:

a a’p

2 P Pr(l—ﬂzj
L, = Pr L,Lszcz _r *
a’f) 2@y +1) a’p

Recovery temperature

Pr l—ﬂ
6(17) = Lye ™1 + Ly (e ") [ "‘2]1F{Pf(1_ﬂzj_2;Pr[l_ﬂzJﬂ;__Pzr eaJ
a

where

The recovery temperature at the stretching plate is given by:

0(0)=L, +L31F1[Pr(l—ﬂzj_2; Pr(l—ﬂzj+l;——Pr }

a

Discussions and results

The flow and heat transfer of a viscous incompressible fluid subjected to variable heat
flux with viscous dissipation effect in the presence of a transverse magnetic field caused by a
stretching wall is governed by the parameters, namely, the magnetic parameter M, the injection
parameter A, the Prandtl number Pr, the radiation parameter », and the Eckert number Ec.

The dimensionless temperature distribution 0(1) is plotted against 7 for different val-
ues of M and A (figs. 1 and 2). It is seen that 8(77) decreases as M increases and it increases with
A. It is also seen that 8(n) is negative.
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Figure 1. Dimensionless temperature against 7,
for different values of M with Pr =2.0, N=1.67,
A=0.2,and Ec = 0.4
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Figure 3. Dimensionless temperature against 7,
for different values of Pr with M =5.0, N=1.67,
A=0.2, and Ec = 0.6
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Figure 4. Dimensionless temperature against ,
for different values of N with M =5.0, Pr=1.0,
A=0.4, and Ec = 0.6
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Figure 5. Dimensionless temperature against
for different values of Ec with M=1.0, N=5.0,
A=0.4, and Pr=2.0
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Figure 2. Dimensionless temperature against n
for different values of A with Pr =2.0, N =1.67,
M=1.0,and Ec=0.4

In fig. 3, the dimensionless temperature dis-
tribution 6(n) is plotted against i for different
values of Pr. The profiles of function 6(n) are
all negative and the function increases as Pr in-
creases.

The dimensionless temperature distribution
0(n) is plotted against nfor different values of N
in fig. 4. The case of no radiation is also shown
in the figure (i. e. when N is infinitely large). It
may be noted that temperature function 6(n) in-
creases as radiation parameter N increases.
Also, the function 6(7) is negative for all values
of N.

In fig. 5, the dimensionless temperature dis-
tribution 6(n) is plotted against n for different
values of Ec. It is noted that 6(7) increases with
Ec, which shows the effect of viscous dissipa-
tion. It may be noted that Ec = 0.0 corresponds
to the case of absence of viscous dissipation.

The recovery temperature 6(0) is plotted
against Pr for different values of M and A in figs.
6 and 7, respectively. It is seen that 6(0) de-
creases as M increases, but it increases as A in-
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Figure 6. Recovery temperature against Pr for
different values of M with 1 =0.2, N=1.67, and
Ec=1.0
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Figure 7. Recovery temperature against Pr for
different values of 1 with M=1.0, N=1.67, and
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0.0 05 1.0 15 20 creases. The results for M are being changed af-
0

ter Pr~ (.7. It is also seen that 6(0) is negative
for both the cases.
" The recovery temperature 0(0) is plotted

I i against Pr for different values of Nin fig. 8. It is
! Mz=07 being observed that 6(0) increases with N or

0(0) decreases as radiation increases.

The recovery temperature 0(0) is plotted
against Pr for different values of Ec in fig. 9. It is
seen that 0(0) increases with Ec.
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Figure 8. Recovery temperature against Pr for Figure 9. Recovery temperature against Pr for
different values of NV with M =1.0, 1 = 0.2, and different values of A with M=5.0, N=1.67, and
Ec=1.0 2=0.5
Conclusions

The presence of radiation decreases the temperature in the boundary layer.
The effect of viscous dissipation is to increase the temperature in the boundary layer.
The recovery temperature 6(0) is decreased in presence of radiation whereas it is in-

creased in presence of viscous dissipation.
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