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Since the pioneering studies of Goodman on the application of the integral method
to transient non-linear heat diffusion, much attention has been devoted nowadays
to what is called heat balance integral method. The present paper considers this
technique fifty years later. The genesis and earlier developments, when applied to
Stefan like-problems, are reported hereafter. Its simplicity and efficiency are dem-
onstrated. Some numerical results obtained using methods developed on the basis
of the heat balance integral are compared. Furthermore, for problems including
temperature profile behaviour, such as Stefan problem with forcing term (source or
sink) this technique gives highly precise results and may, in some cases, lead to ex-
act solutions.
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Introduction

The heat-balance integral method was presented, for the first time in 1957, publicly by
Goodman at the Heat Transfer and Fluid Mechanics Institute in Pasadena (USA) before its pub-
lication in 1958. The heat-balance integral (HBI) was then adopted in the technical language [1].
This technique, among a great number of numerical and analytical works developed and applied
successfully to non-linear transient diffusion problems, has received a considerable attention.
Two decades only after being published, the paper was cited over 100 times and was considered
by its author as being one of his best efforts [2]. Since that time an increasing interest has been
given to such method which is the basis of a great amount of research work. For instance, one
should note aerodynamic heating by forced convection [3], heat transfer with transpiration [4],
prediction of the response of a positive temperature coefficient thermistor [5, 6], conduc-
tion-controlled rewetting problems [7], boilover phenomenon occurring in fuel tanks [8], nu-
clear reactor safety analysis [9], deicing systems [10], and casting metals and spray forming
[11]. The method allows satisfactory results with the least numerical efforts and, in some cases,
leads to analytical solutions. This technique shows remarkable flexibility to include cylindrical
[12-15] and spherical [12, 14, 16] coordinates with various boundary conditions and trials were
carried on for two-dimensional [17] and three-dimensional [18] heat diffusion problems.
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The simplicity of the method to generate approximate functional solutions to non-lin-
ear diffusion problems motivated many investigations on refining the method or enlarging its
application domain. The HBI method allows deriving the moving front velocity, heat fluxes or
internal energy variations straightaway from the temperature profile. Furthermore, it provides
starting solutions for complex numerical schemes.

The method appears, presently, to be a definite powerful approach to many non-linear
diffusion problems since it doesn’t need any linearization of the required equations. It should be
observed that the non-linearity can either be induced by the temperature dependency of the
transport properties [ 19-21] or by the non-linearity of the boundary conditions [22] such as at a
phase change front.

The main advantage is due to the transformation of the governing equation, from a par-
tial differential form to an ordinary differential one. In the case of the heat diffusion in a variable
domain, the latter is achieved according to the following procedure:

(1) assuming an adequate function for the temperature distribution,

(2) enforcing the available boundary conditions,

(3) obtaining the heat-balance integral equation by integrating once the diffusion equation, with
respect to space, over the domain of interest, and

(4) substituting the assumed profile in the obtained heat integral equation to get an ordinary
differential equation for the location of moving boundary as function of time.

From the outlined procedure, it seems clear that the assumed profile constitutes the
central part of the original Goodman’s technique [1]. It should be pointed out that the method ac-
curacy depends on the chosen profile. Despite a large number of investigations [12, 19, 23-25]
there is, unfortunately, no systematic procedure to choose the most appropriate profile. Inspect-
ing the steady-state form of heat transfer problem, as suggested by Goodman himself [3], to
identify an appropriate approximant for the transient phase doesn’t seem to be a promising way.
Then, works were oriented towards a decrease on the accuracy dependence of the method on an
arbitrarily profile [20, 26-31].

In the present contribution, the method is developed in the case of the one-phase
Stefan problem which was the basis of the Goodman’s method derivation. Some refinement pro-
cedures, developed in the literature, are reported and compared. Moreover, this work considers
application of the method in the case of Stefan problem with a source-sink term (forcing term).
In that case, the technique may lead to analytical solution in closed form.

Classical one-phase Stefan problem

The non-linear mathematical model described by transient diffusion equation consid-
ered by Goodman is the “One-phase Stefan problem”. It refers to heat conduction involving
phase change in medium which is initially (¢ = 0) at its melting temperature, 7’,,, and remains in
thermal equilibrium during all the process of phase change [32]. The non-linearity is associated
to the equation expressing the jump condition in terms of heat flux at the freezing (melting) front
4(%). One should note that the latter is a moving boundary. For the classical Stefan problem, the
medium holds the half-plane x > 0 and the phase change is initiated at the boundary with a sud-
den temperature decrease (freezing) or increase (melting) and maintained fixed during all the
process. The transport properties £ and ¢, thermal conductivity and specific heat, respectively, as
well as density p are considered constant.

Introducing dimensionless variables, the heat transport equation in the layer 0 <x <
<d(?), is given as:
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where t=at/l2,&=x/l,, 0 = (T~ T, )(T,~ T,,) and A =5/l s refer to dimensionless time, space
coordinate, temperature, and moving front position, respectively, and a = k/pc is the thermal
diffusivity .

The Stefan number, Ste, expresses the dimensionless latent heat and defined by the ra-
tio of the heat needed to cool the solid from its melting temperature to 7, (7,..= 7, in the present

section) to the latent heat needed to transform liquid to solid:

_ 1% C(T m T, 0 )
pL

The initial condition closing the mathematical model is given by location of the mov-
ing front at ¢ = 0, that is A(0) = 0.

The exact solution of this problem is available in literature [33, 34]. It can be easily de-
rived by using the similarity variable to transform the governing equation from partial differen-
tial equation to ordinary differential one. It should be pointed out that our interest is focussed on
the moving front position expressed by:

Ste

A(r) =224t (6)
where A is the freezing constant given by the root of the following transcendental equation:
Aeterf(1) = 2% %

Jn

erfis the error function. The temperature is expressed through: 0(&, 7) =1 —erf(&/21"?)/erf(1).
Goodman HBI solution

Taking into account that the problem is a special case of a non-linear transient diffu-
sion problem, Goodman applied the well known Karman-Pohlhausen method developed in fluid
dynamics. This technique, called generally the integral method, was developed, independently,
by Th. von Karman [35] and K. Pohlhausen [36] to study the momentum diffusion in the bound-
ary layer. Analogous to the momentum integral method, the formulation does not require any
linearization of the considered equation. The analysis introduces the well known notion of pene-
tration depth, 6 (#) for which the medium is at the equilibrium temperature from x > 5,(¢) and
there is no heat transferred beyond this point. It is observed that, when no phase change is in-
volved, 6,(¢) is set instantaneously to infinity, according to Fourier’s law. However, this is not
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the case in Stefan like-problem since the thermal depth penetration coincides with the phase
change front. Then the boundary conditions are well defined as given by eqs. 4 and 5.

Following the procedure outlined in Introduction, the suitable approximating profile
for the description of the temperature distribution in the layer is assumed to be quadratic. En-
forcing then the boundary conditions (3), and 4), the later takes form:

e r)=g[1—§j+a—g)(1—§j (8)

where ¢ is a time-dependent parameter to be determined alike the moving boundary position A.
Using eq. 8 in the Stefan condition (5), one obtains for the parameter g:
1 da?
> 2Ste dr ©
The technique is based on the approximation of the heat conduction eq. (1) by an overall
energy balance in the domain of interest. After space integration, over the layer 0 <& < A(?), the heat
conduction equation gives: ' 20 00
— lode=— -
dr 2, o £t o £=0
The result is referred to as the HBI for the region of interest and expresses the macro-
scopic heat-balance across this region. It can be seen from the resulting equation that the tech-
nique satisfies the heat conduction equation only on the average. Furthermore, derivatives of an
arbitrarily profile, as appearing in the right hand side of eq. (10), may induce errors. On the other
hand its effectiveness is largely due to the left hand side of the above equation as long as the as-
sumed profile satisfies the boundary conditions.
After substituting the profile (eq. 8) in HBI eq. (10) with takes into account the Stefan
condition (eq. 9), the moving boundary location is tracked through the following analytical ex-
pression:

(10)

A(2) =24/ (Ste +6)2 +12Ste — (Ste +6) Wz (11)

It can be noticed the computa-
tional simplicity introduced by the
HBI procedure compared to the ex-
act solution which requires evalua-
tions of both the freezing constant
through numerical iterative se-
quences and tabulated functions (the
error function). Moreover, as shown
in fig. 1, the obtained results from eq.
(11) compared to the exact solution
are satisfactory. The method predicts
the moving front location with an er-
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Further considerations and refinements

The accuracy of the method depends strongly on the substituting profile which, ac-
cording to Fox [37], must be carefully chosen. The precision does not necessarily increase with
the polynomial degree as expected. As a matter of fact, investigations have shown that in some
cases lower polynomial degrees gave better results than those at higher order [19, 25]. Then the
following important question arises: could it possible to develop a systematic procedure for
choosing the appropriate polynomial order of the profile to get the most accurate results?

The above question at first found its answer with Goodman’s primary works [19, 22]
where the author concluded that there is no a priori guarantee that increasing the order of the
polynomial will improve the accuracy of the method. Among several studies [24, 25, 37], that
confirmed Goodman’s conclusion, one can refer to Vujanovic ef al. [24]. On the other hand, the
later authors showed that, for a specific problem, a procedure can be developed to optimize the
polynomial degree.

Additional boundary conditions are required to increase the approximations order.
Among other investigations devoted to additional mathematical relations the most important are
reported hereafter.

Alternative Stefan condition

Goodman [19] developed an alternative Stefan condition similar to the smoothing
condition considered in problems without phase change. It is recalled that smoothing condition
implies that all successive temperature derivatives vanish at the penetration depth [22]. The al-
ternative Stefan condition is built from the total derivative of temperature on the moving front
where the heat conduction equation is assumed to be valid; fact which might not be strictly ex-
act since the interface is isothermal. This procedure leads to:

2
2

[ﬁ J _ 510 22
2|, o

After substituting the temperature profile (eq. 8) in eq. (12), the evolution of the pa-
rameter § as function of the moving front position A is obtained. The HBI eq. (10) is then devel-
oped using the original Stefan condition (eq. 5) leading to a new analytical solution (tab. 1). One
should observe that this approach provides lower accuracy than the original HBI method (eq.
11) as shown in fig. 2 and confirmed in the Wood’s [38] investigation.

The original and alternative forms of the Stefan condition — egs. (5) and (12) — were
both considered by Wood to highlight six alternative pathways in the two-parameter quadratic
HBI method implementation. In addition to solutions due to Goodman and discussed above, two
new analytical expressions for the freezing constant are obtained (tabs. 1 and 2). The author
shows that the solution accuracy is improved through the use of the original Stefan condition as
well as in the development of the HBI equation and in the boundary conditions generation. Ac-
cording to the author, the loss of accuracy, with the use of eq. 12, arises from the assumption in-
troduced in its derivation: the application of the heat conduction equation at the isothermal mov-
ing front.

(12)

&=A

Poots considerations

Poots [12] considers the HBI method to treat the freezing front in three configurations:
inward solidification of the semi-infinite region, circular cylinder, and sphere. Since the basic
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quadratic HBI method fails when applied to the circular cylinder and sphere, the author develops
two approaches. At first, the author considers the Goodman HBI with a linear one-parameter pro-
file® = 1 — (£/A) which leads to a simple analytical freezing constant: A = [Ste/(2 + Ste)]"2. The
same author proposed then a new approach to make the quadratic HBI method applicable to the
above-mentioned configurations. For that purpose, a procedure, due to Tani [39], based on a
modification of the Karman-Pohlhausen technique is used. The latter consists on assuming a sim-
ple two-parameter quadratic profile satisfying the boundary conditions (3, 4). It is written in a
form slightly different from the profile (eq. 8) assumed by Goodman:

(1-81-cE
9(3;‘,1)—(1 Aj(l gAj (13)

Then a new equation with less physical meaning than HBI equation is developed and
used inconjunction with the Goodman HBI (eq. 10). It’s derived by multiplying both sides of eq.
(1) by(09/0¢)dé and integrating from & = 0 to & = A; the alternative Stefan condition (eq. 12) is ap-
plied. The substitution of the assumed profile into both equations leads to a pair of first order equa-
tions for A and ¢£. In addition to the initial location of the moving boundary A(0) = 0, the required
second condition is derived, by Tani procedure, from consideration of the total thermal energy of
the layer growth and it is expressed as:

lim(A¢)=0 (14)

The obtained result is as simple as the one given by one-parameter linear profile (see tab. 1).
Coupled integral equation approach

Mennig and Ozisik [29] conducted an investigation to make the method applicable in-
dependently of the assumed temperature profile. The authors developed an additional equation
to be used in conjunction with the HBI equation. This approach was identified as a coupled inte-
gral equation approach and is based on the use of the trapezoidal rule to evaluate integral of both
temperature and heat flux by considering their values only at the boundaries of the thermal layer.
This additional boundary condition is then derived and used to define the unknown heat flux at
fixed boundary as follows:

8_5 £=0 Ste dr A

The eq. (15) associated to HBI equation allows to get the freezing constant 4. It should
be noted that, even if the authors did not explicitly assume an approximating profile, the approach
considers implicitly the temperature distribution to be linear in the left hand side of HBI equation
and quadratic in the right hand side since the heat flux is considered varying linearly within the
thermal layer.

00 __1.da ,0(A7)-00,7) (15)

Double integral approach

In order to bypass the derivative of an arbitrary temperature profile, the heat diffusion
equation is integrated twice with respect to space. The result in conjunction with the HBI equa-
tion allows removing the heat flux at the fixed boundary. The technique, due to Volkov et al.
[20], is originally developed to refine Goodman HBI method in the case of transient heat diffu-
sion without phase change. The non-linearity is introduced by the temperature dependency of
the material properties. In the Stefan problem, taking into consideration that non-linearity is due
to the moving front, this technique [26] leads to:
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A g
[ ] @dz:'dcs:—l—Ag—g (16)

Zo&=0 0T £=0

After some algebraic manipulations [39, 40] of eq. (16) in conjunction with HBI eq.
(10) and eq. (5), the following is obtained:

A2
2Ste

Table 1 reports the analytical expressions obtained for the freezing constant when lin-
ear or two-parameter quadratic profiles are used. One can note that the result (eq.17) is also de-
rived by Elmas [28], Hamill ef al. [27], and El-Genk et al. [42] using the double integral ap-
proach formulated in fixed domain rather than moving one. The domain is fixed trough the use
of the Landau space variable n = x/5(f) leading to:

+jeods =1 (17)
0

£ =| -+ "ned ) (18)
T)=|—+ T
ZSte 77:(;7 T]

The consideration of the temperature limits 0 < 6 < 1sets 0 < jé n@dn < 1/2 which gives
to A%(t) the upper and lower bounds. Two approximations are developed to obtain A(7). The first
one is based on the arithmetic average of upper and lower limits of A(7) [42] while the second is
computed from eq. (18) where the average is performed on the denominator [28]. Another ap-
proach is developed by El-Genk et al. [42] using a four-parameter, including A(7), quadratic
profile. The result is linearized through the use of the alternative Stefan condition.

Piecewise HBI implementation

Finding a satisfactory approximating profile constitutes a major difficulty of the HBI
method. For that purpose Noble [31] suggests that piecewise implementation constitutes a
promising way to improve the accuracy. This can be understood since most functions can be
piecewise approximated, with an increasing accuracy inversely proportional to the interval size,
in addition to the thin layer approximation of the diffusion equation.

In principle the layer is divided into thinner sub-layers in which the profile can be ap-
proximated by simple form. The HBI method is then applied using linear [15, 23, 31, 43], qua-
dratic, exponential or Gaussian [23] profiles in each sub-layer. This is expressed for instance in
the sub-layer§; <&<¢& ., (j=0,1,..,N—-1)as:

St dé. dé.
4 ode =0, Il —eji+@ -~ (19)
dr g dr dr o c o0& c
where e !
dr dr o&| y Ste dr
Noble [31] considers subdivision of the space independent variable into equal region
depth as follows: A A
51 :§]—| +W::]ﬁ’ ]:0,1,,N (203)

Bell [30, 43], on the other hand, modifies the method by subdividing the dependent
variable, temperature, into /N intervals:

1 J .
0,=0, ,+—@,-0,)=.=0,+—@0,-6,), j=0,1...,N 20.b
j-1 N( 0) 0 N( 0)s J ( )

J
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As a result of this procedure, a set of non-linear coupled equations is obtained and
solved numerically. Note that when high order-approximation is used, the conditions expressing
the continuity of heat flux between each sub-layer and its neighbours must be considered to-
gether with those defining temperature continuity [23, 34].

The convergence properties of the heat balance integral method, for conduction prob-
lem with [44] or without [45] phase-change, are discussed. It is shown that, with a particular
mode of subdivision and a piecewise linear profile, the approximate solution converges for-
mally to the exact solution. However, this convergence towards the exact solution requires an
increase of sub-regions number increasing then the number of non-linear coupled equations to
solve. As result, the HBI method becomes a numerical procedure similar to a finite element ap-
proach and losing then its simplicity.

Some analytical expressions for A

The various approaches developed, using Goodman HBI technique, to track the mov-
ing boundary in the case of the one-phase Stefan problem provided several approximate analyti-
cal solutions.

Table 1 summarizes some analytical expressions of the freezing constant. On the
overall, all expressions provide accurate localisation of the moving boundary for small Stefan
numbers or at the beginning of the process (short times). This is due to the fact that the cumu-

Table 1. Analytical freezing constant expressions obtained by analytical methods
developed using heat balance integral technique

Freezing constant expression, A2 Authors

. %[ J(Ste+ 6)2 + 12Ste — (Ste+ 6)}
1+ 2Ste—A/1+ Ste Goodman, T. R. [1], [19]
5+ 2Ste++/1+ 2Ste

3 1+ Ste—+/1+ Ste
2+ Ste+ 1+ Ste Poots, G. [12]

6 1+ Ste—+/1+ 2Ste

—1+ 2Ste+ 1+ 2Ste

Wood, A. S. [38]

2Ste .
4+ St Mennig, J. and Ozisik, M. N. [29]
Ste Hamill, T. D. and Bankoff, S. G. [27], Elmas, M. [28],
2+ Ste Poots, G. [12]
Ste(2 + Ste+ 24/1+ Ste)
8(1+ Ste)
3Ste El-Genk, M. S. and Cronenberg, A.W. [42]
5+ Ste++/1+ 2Ste
3Ste )
23 + Ste) Sadoun, N. and Si-Ahmed, E. K. [40]

1
7 [ V(Ste+6)* + 24Ste — (Ste+ 6)} Sadoun, N., Si-Ahmed, E. K., and Colinet, P. [41]
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lated heat is negligible in both cases. Furthermore for small Ste the stored heat is small com-
pared to latent heat while for short time the crust layer is very thin. In such cases the temperature
profile can be well approximated by a simple linear form. Thus, these approaches provide an ef-
ficient device to compute starting solution for numerical schemes when required.

The expression of the freezing constant obtained from exponential and Gaussian basic
HBI method [23] and refined HBI with simple exponential distribution [46] are summarized in
tab. 2. It should be observed that the solution requires solving transcendental equations.

Table 2. Semi-analytical freezing constant expressions obtained by analytical methods
developed using heat balance integral technique

Freezing constant expression, 12 Authors

Ste et .
——=— where ¢ isthe root of
° 2 &1 ig .
1+ Ste){ — Stele“> — (2§ —Ste)ec +¢ =0
L )¢ ] (2 ) ¢ Mosally, F., Wood, A. S., and Al-Fhaid, A.

%(H 20) where ¢ is the root of (23]
(1+20)[2(1+ Ste)&eé + (1-¢)Ste]-2¢ =0

%C where § € {0, 1} is the root of

_ Wood, A. S. [38
Ste £2 + (2Ste+ 6)§+"%—12:0 [38]
(3]

Ste ge¢
2 eb-1 Sadoun, N., Si-Ahmed, E. K., and Legrand, J.
C(eb-1)Ceb —eb+ 1)+ Ste[C€ —2)eb + 2(e6 —)]es =0 | [46]

where ¢ is the root of

Simple exponential or quadratic profile leads to the same order of accuracy in the
Goodman’s basic HBI. Gaussian profile provides, as expected, more accurate solution. This can
be understood since the latter is suggested by the exact solution. As matter of fact, the first term
in the power series of the error function erf(n) is described by ne” . However, in most cases the
exact solution is unfortunately unknown beforehand.

Some numerical results, obtained using modified Goodman HBI technique, are re-
ported in tab. 3. The first, considers piecewise implementation of the method with linear temper-
ature profile in each cell [23]. Three domains are considered, 10, 20, and 40 sub-regions. As ex-
pected, the rate of convergence of the method is numerically established. The second approach
is based on the HBI refinement using the double integral technique. Three applications are as
well considered linear, quadratic, and exponential profiles to capture the temperature distribu-
tion.

The relative error on the freezing constant A, given in tab. 1, is plotted as function of
the Stefan number in fig. 2. Two important remarks are made. Firstly the alternative Stefan con-
dition inhibits obviously the method accuracy. Secondly the double integral technique improves
the accuracy while remaining simple and flexible. In addition, the double technique requires
only a linear profile to give results as precise as those obtained from the piecewise implementa-
tion (tab. 3).
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[ —— Goodman [1]
10'F —— Goodman [19]
E —o»— Poots HBI with linear profile [12]
[ —=— Poots with Tani method [12]
F —=— Wood [38]

[ — — Menning et Ozisik [29)

Figure 2. Relative error

|)\'exa _ﬂ'app | /ﬂ-exa [%] on the
freezing constant, 1, as given by
different approaches
constructed using Goodman's
HBI technique (color image see
on our web site)

=3
s

—o— Sadoun and Si-Ahmed [40]

—=— Sadoun and al. [41] ]
—u— El-Genk and Cronenberg (ULBA) [44
—+— El-Genk and Cronenberg (RHBI) [42]

Relative error on the freezing constant, 1

10- 10° 10!

Stefan number, Ste

Table 3. Values of the freezing constant given by piecewise linear HBI and refined HBI using
double integral approach

1073 0.022357 | 0.022357 0.022357 0.022357 0.022357 0.022357 0.022357
102 0.070593 | 0.070585 0.070589 0.070591 0.070593 0.070593 0.070593
10! 0.220016 | 0.219756 0.219884 0.219950 0.210027 0.219950 0.210028
1 0.620063 | 0.613967 0.616960 0.618502 0.612372 0.621290 0.621843
10% 1.850946 1.665452 1.756491 1.803263 1.206777 1.641134 2.094461
Tox, 8 = Application to Stefan problem
2 : e with source term
: g
3 g LA gy Consider the cooling of a semi-infinite slab
E 2 dt of phase change material that is initially (# = 0)
L :

at its melting temperature 7,,, and occupies the
region x > J; (/s = 6; in the present section).
T, The liquid is in contact with a finite slab
0 < x < 6; which is solid with initial tempera-
ture distribution 7i(x) = 7(x, 0). A heat sink is
applied to solid region and expressed by the

0 Sy 5(t) X
Figure 3. Physical model for one-phase Stefan
problem in semi-infinite medium with source/sink
in the growth layer (case of melting)

function S(x, ). Initial heat flux at the contact
surface causes the liquid to solidify, so that the
solid thickness (¢) increases as time proceeds

(fig. 3).
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If constant thermophysical properties are assumed and density change from liquid to
solid is ignored, then the heat conduction equation and related initial and boundary conditions
are given in the dimensionless form as follows:

00 o070
P 852 +X(&,1); >0, 0<E<A(D) (21)
0¢,n)=F(¢&), 7=0, 0<£<1 (22)
0¢,r)=0, >0, &=0 (23)
0¢&1)=0, >0, &E=A(@ (24)
00__1 d4 _
a—é TS >0, &=A(7) (25)

The dimensionless variables t=at/6%,&=x/0;, A = 6/5;, 0 = (T~ T ) (T4~ T,), £ =
=02SIK(T ot~ Ty, and F(E) = [Ti(x) — T, J/(T,es— T,,) refer to dimensionless time, space coordi-
nate, moving front position, temperature, forcing term, and initial temperature distribution, re-
spectively. The initial thickness &, is taken as the reference length /.

The problem is described by a parabolic equation (eq. 21) with non-linear free boundary con-
dition (eq. 25). Closure to the mathematical model is given by the moving boundary initial posi-

tion A(r) =1 for r=0.
Approximating profile

Following the HBI implementation procedure outlined above, the first step consists on
the choice of the temperature profile in the thermal layer 0 < & < A(7). Compared to the classical
Stefan problem, where the only information available is given by the boundary conditions, the
present problem sets the initial temperature distribution Ti(x) or F in dimensionless form. The
profile’s shape is assumed to remain the same during the process and given as follows:

0E.7)= g(r)F[ e )J 26)
where ¢ is a time-dependent function to be determined with the moving front location A(7). Its
initial value, £(0) = 1, is obtained considering the initial temperature distribution (eq. 22). It
should be noted that the assumed profile verifies the boundary conditions (23, 24) and its substi-
tution into the Stefan condition (eq. 25) leads to:
2
u =-2Ste oF ¢ 27)

dr M

where 11 = &/A(7).
Heat-balance integral equation

The second step establishes the energy balance integral equation by integrating the
heat diffusion equation with respect to space and over the layer, 0 < £ < A(7) with the condition
that the Stefan equation at the moving boundary is verified, as advised by Wood [38]:

1 d4 o6 e

- 19(5 )d«f——gd——a—gézo +¢£02(§, 7)dg (28)



92 Sadoun, N., et al.: On the Goodman Heat-Balance Integral Method for ...

Expression of assumed profile (26) combines with the eq. (28) to give:

or oF A&
1 T t7IXEnd
i _¢ ) 1aw Oy 9l &0 (29)
v "TF (nydn
=0

Introducing given expressions of the initial temperature distribution, F(17), and forcing
term, 2'(&, 7) in egs. (27) and (29) above, a pair of first order ordinary differential equations is ob-
tained. The result is adequate to determine the two unknown functions A(7) and {(7) subject to
the initial conditions:

Ar=0)=1 (30)

r=0)=1 (31
Test problem

Fasano et al. [47] investigated the problem and demonstrated that it has a unique solu-
tion provides that the functions X(&,7) and F(£) are sufficiently regular. In the particular case of
Ste = 1 and for the initial temperature distribution and the forcing function defined by the fol-
lowing expressions:

F@E)=¢1-9) (32)
T r)=Ee" +2 (33)

Exact analytical solution is derived from their analysis. It expresses the moving
boundary location and the temperature distribution for as follows:

A(r)=¢’ (34)

0(8,7)=8(A-8), for0<E&<A(r) (35)

From the initial temperature distribution, one deduces the approximating profile to be
considered in this case. Thus: g £

0C, T)=§Z(1—Zj (36)

Setting and making use of egs. (32) and (33) where F(§) and X'(&, 7) are defined, egs.
(28) and (29) lead to the following second order ordinary differential equation:

5 2
d_°r+i do +2d—6:6Ste(ef\/g+4) 37
d?2 20\ dr o dr
Time-dependent parameter is deduced from Stefan condition:
d—o- =2Sted (38)
dr

Combined with initial, conditions (egs. 30-31) provide starting values o = 1 and do/dr =
=1 at 7 = 0, required by integration of differential eq. (37). The temperature distribution is ex-
pressed as follows:
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R
o6 T)_2Ste dr A[l j

Numerical integration can be performed
using available softwares like Mathematica or
Matlab. For that purpose, eq. (37) was con-
verted to an equivalent coupled system of two
first order differential equations. The dimen-
sionless freezing front velocity, (dA4/dz), vs.
the dimensionless time is plotted in fig. 4 for
different values of the dimensionless latent
heat (Stefan number). The solution given by
numerical method based on modified bound-
ary immobilisation technique is plotted for
comparison.

It is important to note that for Ste = 1, the
HBI method leads to the exact solution. This
can be checked by setting o = ¢ in egs. (37)
and (39). The exact solution is then obtained.

Z 10
S
o
[
Z M
'é 100 Ste =1
)
£ .
N F i ieseessseccscs® eccnosd
310—1 Ste = 10”1
‘a
«
2 cesasse
g enaencsacs . 93999_0_5_29—72-——————
"‘:_"1072 . BIM Ste =10
g —— HBI
S

10-3 L I 1 L

0.0 0.2 0.4

06 08 1.
Dimensionless time [z]

Figure 4. Dimensionless freezing front velocity as
given by Goodman heat-balance integral (HBI)
and numerical moving immobilisation (BIM)

methods
Conclusions

Through the present paper, Goodman HBI method is discussed with illustration by ap-
plication to a classical one-phase Stefan problem. The main advantage of the HBI method lies in
the remarkable association of simplicity, flexibility, and acceptable accuracy. However, the
choice of the best trial polynomial for the description of the temperature distribution is recog-
nized to be the important problem of the HBI approach. Investigations conducted to its refine-
ment, lead generally to results with restricted application domains or to solutions losing the sim-
plicity of the method. It should be noted that the double integral method is the approach which,
not only decreases the sensitivity to the choice of the trial function but it also keeps the simplic-
ity and flexibility of the HBI method. Application of the method when the form of the tempera-
ture distribution is known shows that the technique may lead to the exact solution in some cases.

On the overall, the technique even used in its original form remains a very good tool to
generate a satisfactory solution for transient non-linear diffusion problems, with less computing
time than a classical numerical approach.
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Nomenclature
c — specific heat, [Jkg 'K1] f — initial temperature distribution
F — dimensionless initial temperature k — thermal conductivity, [Wm K]

distribution {=[Ti(x) — Tp)/(Trer— T)1} L — specific latent heat of solidification, [Jkg ']
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/ — length, [m] P — density, [kgm™]

N — forcing term, [Wm 'K X — dimensionless forcing term

Ste — Stefan number [= pc(Ty — Tw)/pL], [-] — [=828/k(Tret— Ty)]

T — temperature, [K] e} — intermediate variable (=A%), [-]

t — time, [s] T — dimensionless time (= a#/57)

X — spatial coordinate, [m] Subscripts

Greek letter

app  — approached value
o — thermal diffusivity [= k/(pc)], [m’s™] exa  — exactvalue
A — dimensionless freezing front position i — initial value
(=0/5) m — melting or freezing point

o — freezing front position, [m] ref — reference

¢ — dimensionless shape function 0 — relativetox =0

g - é.andau. oflvarlable (=&/A =x06), [-] Functions
— dimensionless temperature

[= (T — Tu)(Tres— Tw)] e — exponential function

A — freezing constant, [-] erf — error function, erf(x) = 2/n" 2_[g cdr

é — dimensionless spatial coordinate (= £/5;)
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