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Conjugate thermal explosion is an extension of the classical theory, proposed and
studied recently by the author.

The paper reports application of heat-balance integral method for developing
phase portraits for systems undergoing conjugate thermal explosion. The heat-bal-
ance integral method is used as an averaging method reducing partical differential
equation problem to the set of first-order ordinary differential equations. The latter
reduced problem allows natural interpretation in appropriately chosen phase
space.

1t is shown that, with the help of heat-balance integral technique, conjugate thermal
explosion problem can be described with a good accuracy by the set of non-linear
first-order differential equations involving complex error function. Phase trajecto-
ries are presented for typical regimes emerging in conjugate thermal explosion.
Use of heat-balance integral as a spatial averaging method allows efficient de-
scription of system evolution to be developed.
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Introduction

Thermal explosion theory is at foundation of combustion science, and has been an area
of intensive research for over 80 years. It offers scientific basis for understanding of a vast range
of phenomena occurring in industrial and safety applications. Derived first in 1928 by Semenov
in his fundamental paper [1], critical conditions for thermal explosion were then considered in
the framework of Frank-Kamenetskii theory [2]. The latter takes into account temperature dis-
tribution in the reaction zone by considering heat transfer equation with a non-linear
(Arrhenius) chemical source term. Frank-Kamenetskii theory has become the most conven-
tional formulation of the thermal explosion problem.

The exploration of thermal explosion theory has taken different routes since (see, for
example [3-7]). There are two major directions which can be identified. These are kinetic and
thermal lines of research. The first considers various effects of complicated chemical kinetics,
such as different kinetic mechanisms, autocatalysis, parallel reactions, efc. The second direction
investigates complicated forms of heat transfer within reacting mixture, as well as of thermal ex-
change between the mixture and its surroundings.

Conjugate thermal explosion is an extension of the classical theory proposed in the
recent publication [8]. It involves multiple (two in the simplest form) chemically reacting media
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which can thermally interact with each other. Critical conditions in such systems have been
shown [8] to differ significantly from the classical one-media problem.

Heat-balance integral method (HBIM) is also a classical area of investigation in ther-
mal science [9], which has been shown to be very successful for variety of problems. Obviously,
practical importance of the method has diminished drastically from there it was fifty years ago
due to revolution in scientific computation. However, the method is still quite popular and via-
ble since its underlying philosophy is quite fundamental.

In the present paper, the method is applied to developing phase portraits of thermal
system evolution. This is less traditional approach compared to approximate solution of un-
steady heat transfer partial differential equations (PDE) for which the method has been origi-
nally developed. Although not entirely new (bits and pieces of similar philosophy can be traced
through the literature), this interpretation of HBIM is rather fresh and the author is not immedi-
ately aware of the studies which were explicitly concerned with application of the HBIM for in-
terpreting system evolution in the phase space.

The present paper merges therefore the two classical problems. Conjugate thermal ex-
plosion problem is investigated by application of HBIM as a spatial-averaging technique. This
leaves one with the set of ordinary differential equations (ODE) whose interpretation on the
phase plane provides quite accurate and concise picture of thermal system behavior.

Conjugate thermal explosion

For brevity, the problem is considered in the present paper for planar geometry. The
development for the other two classical cases (i. e. cylindrical and spherical symmetries) can be
performed in similar manner.

Extension of classical thermal explosion formulation [2] to the two slabs in thermal
contact is as follows [8]:
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Boundary conditions (2) and (4) are the symmetry condition and the Newton-type heat
exchange with surroundings, respectively. The last two equations are conditions at the interface,
A=A JA, being the ratio between thermal conductivities of solid and gas media. Biot number is
defined as Bi = h /A where A is the convective heat transfer coefficient at the outer boundary
and r, is the transversal dimension of the solid region, respectively.
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Conventional non-dimensional variables [3] are used here for the excess temperature 6,
spatial coordinates & and ¢, and Frank-Kamenetskii parameters 6, and 6. In general, adiabatic
time scales [3] are different between the phases. A uniform non-dimensional time for the com-
posite sample may be introduced as 7 =#(z2472¢)"!2, where 134 and #2¢ are adiabatic time scales
for the corresponding phases. Note that the adiabatic time scale and Frank-Kamenetskii parame-
ter may generally vary independently.

Conduction is assumed to be the only mode of heat transfer. For convenience of refer-
encing, the material extending from& =0to & = 1 is called “gas”, and the one extending from ¢ =1
10 ¢ =¢ “solid”, although the nature of materials may be arbitrary.

Critical conditions for conjugate thermal explosion with three different types of sym-
metry are reported in [8], where some numerical results are also presented.

Heat-balance integral formulation

Based on qualitative understanding of the process, and also typical results of numeri-
cal simulations [8], parabolic profiles are assumed for the two materials.

The natural characteristic points that can be chosen to characterize the process are the
centerline of the vessel and the materials interface. This choice is justified by the observation
that in most cases the explosion (thermal runaway) develops at the symmetry axis (§ = 0). In
some cases, runaway is also possible in the outer region, in which case it develops close to the
interface between the two materials (§ =¢ = 1). Therefore, the centerline and material interface
temperatures are convenient measures of the process development. They not only indicate the
onset of thermal explosion, but also its location (inner or outer region).

The assumed profiles are chosen therefore as:

0, (&, 1) =a, (1) +a, (1) +a, (1)&?

0,(c:7) = by (7) + b (D)(s =) + b, ()(s* —1)

In this form, ay(7) =60,(0, 7) and by(7) =0(1, 7) are the temperature values at the center
of the vessel and at the interface, which need be solved for.

Boundary and interface conditions (2, 4-6) are used to eliminate from (7) all the pa-
rameters except a, and b
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+[fYag(@) + by (D)](c? -1, 1<g<¢

(7

Formulas for the coefficients f° l.j are provided in the Appendix.
The evolution equations for a,(7) and by(7) are established by application of the HBI
method itself:
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Manipulation of egs. (9) is rather tedious, and only the final result is retained here:
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The exact form of g;, ¢;, F(ay, b,), and G(a,, b,), are again provided in the Appendix.

Note that final equations can be written conveniently and uniformly if complex error
function is introduced. Depending on the signs of arguments, actual forms of RHSs in egs. (10)
may be different (but of course the resulting values are real in any case).

The RHSs of both equations look very similar, but in fact they are linearly independ-
ent. The reason for their similarity will be clear from the solution results, where in many cases
a,(t) and b(7) are seen as nearly proportional. However, there are sets of parameters for which
this quasi-proportionality breaks down.

Results and discussion

Solutions [a((7), by(7)] can be considered as a phase trajectories of the system in the
phase space defined by the two characteristic temperatures a, and b,

Numerical solutions of eqgs. (10) are presented in figs. 1 and 2 for the two representa-
tive cases. Initially, the system is at the state (¢, = 0, b, = 0) at the bottom-left corner of the plots,
and then progresses towards the upper-right corner as the time increases.
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In the case shown in fig. 1, all the parameters are fixed except for the Biot number. The
curves 1 and 2 represent the situations of thermal instability (explosion), and these curves can be
extended indefinitely [(ay(t) — o, by(r) = «)]. The rest of the curves (3-8) approach finite
points asymptotically, and represent situations where thermal equilibrium is established. The
separatrix, shown by the dashed line distinguishes “explosion — no explosion” behaviors and
marks therefore the critical conditions (critical Bi number in this instance, since all the other pa-
rameters are fixed).

Explosion develops at the centre of the vessel for the case shown in fig. 1. This is seen
from the fact that a,(7) becomes larger than b(7) as temperature rise progresses (curves 1 and 2).
This difference develops much more profoundly at later stages (see fig. 3 below).

Figure 2 illustrates different case where Frank-Kamenetskii parameter for the solid
phase varies, rather than Biot number. Explosion occurs for high values of this parameter (curves
2-6). The only curve which represents existence of thermal equilibrium is the curve 1 (6, = 12.48),
just left from the separatrix. This curve approaches finite point asymptotically. Separatrix again
marks critical conditions for the thermal explosion, this time in terms of minimum
Frank-Kamenetskii parameter o, for the outer region.

Transition between two different types of explosion can be seen in fig. 2. For the
curves 4, 5, and 6 in fig. 2, maximum temperature occurs in the outer region, since by(7) > a,(t)
as 7 — oo, This type of behavior turns back to situation similar to fig. 1 (maximum temperature
developing at the center) if parameter 6, decreases (curves 2 and 3 in fig. 2).

Figures 1 and 2 illustrate therefore the two different regimes of conjugate thermal ex-
plosion development, i. e. explosion at the symmetry plane (centre of the vessel) or in the vicin-
ity of the boundary between the two materials. Critical conditions for explosion are predicted by
the HBI method to within 8% of their “exact” values, which can be obtained by solving numeri-
cally the full PDE problem.

For convenience, fig. 3 and 4 illustrate the same processes as figs. 1 and 2 by solutions
of the exact PDE problem (1-6). The difference in temperature profile shapes during explosion
phase is apparent.

The results show that HBI method can be helpful in reducing dimension of the prob-
lem and thus allowing its investigation through established mathematical methods, for example
qualitative theory of ODE. The system described in the present paper is rather simple, but more
complicated systems may be analysed in a similar manner. This application of qualitative ODE



78 Novozhilov, V.: Application of Heat-Balance Integral Method to ...

30

0,0 1
v 5 / 2 Figure 3. Detailed temperature
_\\ / profiles (PDE solution) illustrating
20 N / explosion development for
N / parameters J,, O, and A4, Same as
15— N/ in fig. 1
o \\L ~ I-Bi=031=1052-Bi=01,
~—— \\ =105
5 \\¥
T —

0

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00 1.13 1.25 1.38 1.50
s e

10

0, 6

505 s 5 Figure 4. Detailed temperature

/ / profiles (PDE solution)

/ A\ illustrating explosion
development for parameters o,
Asg and Bi, same as in fig. 2
~ 1—6,=124.80, t = 0.345,

\ 2—6,=74.88, v =0.345,
\\ 3—06,=24.96,7=10.345
N\

]
/
NN

8
7
6
5
4
3
2
0

9

1

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00 1.13 1.25 1.38 1.50
& ¢

methods (e. g. phase portraits and their transformation upon variation of parameters) will be
quite helpful in interpretation of behavior of such complicated systems.

Conclusions

The present paper illustrates an application of HBI method to developing phase por-
traits of distributed thermal systems. The method is used as a kind of averaging method which
allows simplified description of the systems in terms of first-order ODEs.

Recently proposed problem of conjugate thermal explosion serves as illustration. The
problem has been shown to be reducible to the set of first-order ODEs involving complex error
function.

The proposed application of HBI method as an averaging technique has a strong po-
tential for investigation of complicated thermal systems.

Nomenclature

a;, by — temperature profile coefficients, [—] I3 — spatial coordinate, [—]

Bi — Biot number, [-] c — spatial coordinate, [-]

2 _ adiabatic time ratio, [] c — spatial dimension of the media, []
T — time, [-]

Greek letters
Subscripts

o — Frank-Kamenetskii parameter, [—]

As  — thermal conductivity ratio, [-] g — 8as
s — solid

0 — excess temperature, [—]
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Appendix

This Appendix lists a variety of coefficients and functions met in the earlier formulas
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