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This paper describes and compares several effective methods for the numerical so-
lution of one-dimensional Stefan problems. The intention is not to make an exhaus-
tive review and so we restrict our attention to a range of problems and geometries
which include melting in the halfplane, outward cylindrical solidification and out-
ward spherical solidification. Effectively, a range of methods is introduced for the
solution of Stefan problems, including (1) enthalpy method, (2) boundary immobili-
zation method, (3) perturbation method, (4) nodal integral method, and (5) heat-
-balance integral method. The above methods are then applied to a selection of test
problems. As a result of this comparison some helpful comments can be made and
conclusions drawn which may prove valuable in the future use of these methods.
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Introduction

Phase change problems, also known as the Stefan problems, occur naturally in many
physical processes, such as, freezing and thawing of foods, production of ice, ice formation on
pipe surface, solidification of steel, and chemical reaction. Mathematically, melting/solidifica-
tion problems are special cases of moving boundary problems. Problems in which the solution
of a differential equation has to satisfy conditions on the boundary of a prescribed domain are re-
ferred to as boundary-value problems. However, in the case of melting/solidification, the
boundary of the domain is not known in advance. This means that the solution of such problems
requires solving the diffusion or heat conduction equation in an unknown region which has to be
determined as part of the solution.

There are very limited analytical solutions to melting/solidification problems and ex-
isting closed-form solutions to these significant problems are highly restrictive as to permissible
initial and boundary conditions. So numerical solution becomes the main tool in the study of
moving-boundary problems. Two conditions are required in order to solve these moving-bound-
ary problems, one to determine the boundary itself and the other to complete the definition of the
solution of the differential equation.

This paper involves a brief review of recent key numerical methods for one-dimen-
sional Stefan problems for simple geometries including plane, cylindrical, and spherical. It is
important to note that the review is not intended to be exhaustive. Numerical results are obtained
from a range of methods researched by the authors, including the enthalpy method, boundary
immobilization method (BIM), perturbation method, nodal integral method (NIM), and heat-



62 Caldwell, J., Kwan, Y.-Y.: A Brief Review of Several Numerical Method for ...

-balance integral method (HBIM). By comparing results, and in some cases making compari-
sons with analytical solutions (where possible), some constructive comments can be made
which will provide useful guidelines for the future use of these methods.

Problem formulation
Melting in the half-plane
Consider the melting of certain material initially at its freezing temperature 7} in the

half-plane x > 0 subject to a time-dependent temperature change at x = 0. The dimensionless
governing equation for the process is:

or T
—=——, 0O<x<s(t), t>0 1
5 on (1) (1
subject to boundary conditions
Tx=0,0=1(n), T[x=s0), 71=0, 2)
ds_ o [ﬂ] (3)
dr Ox v=s(t)

where T is the temperature, x is the space variable, s(¢) is the position of the moving boundary,

and a = c(T;— T,.;)/L is the Stefan number, where c is the specific heat, L is the latent heat, and

T..¢ 1s some reference temperature. For example, one can select 7, such that f{r =0) =1 or
f(1)|=1

maxX o i<,

Outward cylindrical solidification

Consider the outward cylindrical solidification of a saturated liquid due to low temper-
ature at the boundary. The problem can be formulated as:

or 1 o or
E_;E(rgj, 1< r<s(t), 150 )
Tr=1,0=10), T[r=s@),0=1 )
ds_ [oT
a —0{ or )rs(t) ©

Outward spherical solidification

In the case of outward spherical solidification, the corresponding governing equation
is:
ar _12(7)
ot r or?

, I<r<s(t), t>0 (7

subject to boundary conditions (5) and (6).
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Numerical methods

In this section we introduce a range of methods for the solution of Stefan problems. In
all methods only the formulation for the plane geometry is described since other applications
follow the same idea. Readers may refer to specific papers listed in the references for further de-
tails of the methods.

Enthalpy method

The enthalpy formulation is one of the most popular fixed-domain methods for solving
the Stefan problem. In the formulation, the enthalpy function is introduced such that the flux
condition is automatically satisfied across the phase front, which is realized as a jump disconti-
nuity of the enthalpy. Date [1] has developed an enthalpy method which tracks the phase front
easily.

He has applied this method to one and two dimensional problems in plane geometry
and has obtained good agreement with existing solutions. More recently, Caldwell et al. [2, 3]
have also successfully applied the method to cylindrical and spherical geometries. Extension of
the method to higher-dimensional problems can be found in Caldwell et al. [4].

First, the enthalpy function H is defined by:

H=T+af(T) (8)

where ' = /o and £ is the local liquid fraction given by:

1if T >1
T:
A ) {owr<o

Hence H is identical to the temperature except when phase change occurs, in which

case H has a jump of '. Substituting H into the heat equation, we obtain:
OH 0*H
ot  0x?

Discretization of eq. (9) will result in a set of non-linear equations. Date [1] introduces
a simple method which at the same time provides an effective means of tracking the phase
boundary. From eq. (8) we can write 7= H + H', where:

' ifH>d'
H'=—a'f,(T)={-H if0<H<a' (10)
0 ifH<O0

)

Also, we note that —H"/a" is the local liquid fraction while 1 + H'«a " is the local solid
fraction.
The implicit discretization of eq. (9) is:

HED _ g pke) _pplesl) | pke)
i i _ -l i i+l
At (Ax)?
where Ax and Atr represent the space and time steps, respectively. Using the relation
r® =Hl.(k) +H,] ® with H’ ® obtained from eq. (10), we have:

1

, i=12,...,N-1 (11)
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—H* D + Q420)HED —yH D = g 4y [H D 2 @D &0 (12)

where y = At/(Ax)?. This results in a set of nonlinear equations. To solve this system we employ
an iterative scheme, where terms involving A" are set to lag behind terms involving H for one it-
eration. Using the value of H from the previous time step as the initial guess, the values of H'are
calculated from eq. (10). The new value of H is then obtained from eq. (12). This process is con-
tinued until the iterations converge. Then we can continue to the next time step. Note that each
iteration involves solving a tridiagonal system, and can be done effectively by the Thomas algo-
rithm.

Recalling that —H /o' is the liquid fraction in the i control volume, there is a simple
way to calculate the position of the phase front. Consider the integral 7, which represents the vol-
ume of solid in the range 0 < x < s(¢):

s(1) N '
H Ax
I = j dr=Ax) | — |+—
0 i=1 OL’ 2

The last term is due to the fact that the first cell is always occupied by liquid. Here, the
summation can be carried out over all the cells since the cells behind the phase-front give zeros
to —H /o' . Hence we have s(f) = L.

Note that in the cases of outward cylindrical and spherical solidification, there are
small differences in the formulae for / and s(7). The corresponding equations for outward cylin-

drical solidification are: o
I = jrdr:Ar }’i£1+—1 +£
a' 2

1 i=1

s(t)=~1+21
and the equations for outward sperical solidification are:
(1) N ’
H!
I= IrzdrzAr P2 1+ — +£
1 i=1 o' 2

s(1)=31+31

Boundary immobilization method (BIM)

With a suitable transformation, it is possible to fix the moving boundary. This method
was first applied to a finite difference scheme by Crank [5]. Kutluay et al. [6] have also success-
fully applied the method to various problems.

Under the transformation:

=X T n=Tx 1)
S

egs. (1)-(3) can be transformed to one in the fixed domain0 < 7' <1:
, 0r" O*T" . ds oT”
K =—+x 55—
ot ox™? dr ox”

(13)
subject to

T'*=0,0)=1f(¢), T'x"= 1,1 =0, (14)
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s o[ L (15)
dr ox" ).,

A finite difference discretization of eq. (13) implicit in 7~ and explicit in s is:

a®DTED L U he) D7 e (k)27 ® (16)
i i i i i i+1 i

(k)
a*h =y ﬂxis(k) ds -1
! 2 dr

(k+1) _ (o(k) )2
b =(s®)? +2y
kD kD) ~2y
1 1

(k)
s\ _ « ® _
(Ej _s(_k) 4Ty, _TN—Z)

where

(17)

and y = At/(Ax)*. At each time step, the temperature distribution is obtained by solving eq. (16)
and the position of the moving boundary is updated via the formula:

(k)
sk = gk +£@j At (18)
dr

Note that a starting solution for small time is required by the BIM. For plane geometry
one can use the analytic solution for the problem with constant boundary condition as the start-
ing solution [7]. Readers may refer to Caldwell et al. [8] for the starting solutions for other ge-
ometries.

Perturbation method

The perturbation method only works for small Stefan number. It has been successfully
applied to Stefan problems with simple boundary conditions in different geometries see [9-11].
More recently, Caldwell et al. [12] successfully applied the method to Stefan problems with
time-dependent boundary conditions.

Since s() is expected to be a monotonic function of #, we may replace ¢ by s as the sec-
ond independent variable in the governing equations. By making use of eq. (3), eq. (1) can be

written as:
2

o°T _ — orfor (19)

ox? Os\ Ox ).,
On the other hand, the boundary condition at x = 0 is written as:

T=1(t)=F(s)onx =0 (20)
We now derive a three term perturbation solution of the form:

T(x, 5) = To(x, s) + aT\(x, s) + o> TH(x, s) (1)

Substituting eq. (21) into egs. (19) and (20), the governing equations for 7, 7', and 7,
are:
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02T,

=0
Ox?
Ty(x=0,5)=F(s), Ty(x=s,5=0

. O :_GTO[GTOJ

© o ox? os \ ox ) _,
T, (x=0,5)=0, T} (x=5,5)=0

o B
0x? os\ oOx ) _. Os\ ox ) _,

T,(x=0,5)=0, 7,(x=s,5)=0

al:

(22)

The solutions of the above equations are:
Ty (x,5) =F(s)(1 - x7),
Ty (x, ) = % F(s)x™ (x" =D[F(s)(x" +1) = F'(s)s(x™ =2)],
(23)
T, (x,s)= % F(s)x™ (x™ = D[F(s)(x" +1)(9x™2 +19) +10F'(5)2 y2 (x* +4) +
+ 5F(s)F'(s)s(3x™ +5x™ +17) + F(s)F"(s)s2 (x" —2)(3x™ —6x" —4)]
where x* = x/s. Thus, the position of the moving boundary follows the equation:
d_S =— % +a % +o? % =
dr Ox Ox ox ) _,

——F(s) azF(s)[ F(s)+31}

+ a3F(s F(s)? + F's2+—FsF’S——FsF”ss
O FO" + S F0 + 2 FOF )~ S FOF 0| o
The final step is to substitute back f(#) for F(s). With the relations:

dE(s) _df(¢)(ds - d2F(s) _df(r) ds 2
ds  dr \dr) = ds? dr \dr
eq. (24) can be rewritten in the form:

3 2
(Qj +a(l,s)[d—sj +b(t,s)§+c(t,s):0
dr dt

where

a(t,s)=—af(t){ @)+ 20 f(t)}
N
b(1,s) :azf(t)f’(t)[— - —f(t)}

(1) = wf(r){ £/(0)? ——f(t)f"(r)} 25)

By solving eq. (25), the value of ds/d¢ is obtained and s can be found by numerical inte-
gration.

On the other hand, the temperature distribution can be obtained by substituting eq. (16)
into eq. (14).
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Nodal integral method (NIM)

A semi-analytical nodal method to solve the one-dimensional Stefan problem was de-
veloped by Rizwan-Uddin [13]. We give a brief description of the method here. Consider the
transformed heat eq. (13). The space-time domain (0 <x" < 1; 0 <7 <1, is first discretized into
space-time nodes. Each node is identified by the subscript (i, k). The space-averaged, time-de-
pendent temperature and time-averaged, space-dependent temperature for each node are, re-
spectively, defined as:

J— 1 Xir1 ja— 1 tk
Tx(H)=— [ T(x",)dx", T!'(x")=— [T"(x",t)dt
(1) ~ [ T(x",0) W (7)) A [T7(x7, 1)

X; ty
First, eq. (15) is integrated over the time step #,_; < ¢ < 7, to yield:

dT tx*=1)
s2(t)=s5*(t,) - 2adx—(t_tk ) Ly SEst

Next, for each space-time node, a time-step-averaged, second-order ordinary differen-
tial equation (ODE) is obtained for T ! (x") by operating on eq. (13) with (I/At)jfk dt, and a
space-averaged, first-order ODE for T *(t) is obtained by operating on eq. (13) with (I/Ax)
L’“dx After introducing some 51mp11fy1ng assumptions, the second-order ODE in space is
solved using the Dirichlet boundary conditions at the left and right edge of the node, leading to a
solution of the form:

T!(x*)=C, +Cyx" +gexp(-C;x™)

where C,,,(m=1,2,3,...)are constants. On the other hand, the first-order ODE in time is solved
using the initial condition at the beginning of the time step, leading to a solution of the form:

Tx(0) =T (t_) +Cy In[l = Cs(t — 1;1)]

A set of coupled algebraic equations is obtained at each time step by requiring continu-
ity of time-step-averaged temperature and its spatial derivative at each node interface. This set
of coupled equations is then solved iteratively for time-step-averaged temperature at each loca-
tion 7,/ (x" = x; ) and space-averaged-temperature at the next time step 7% (¢ = 1,).

Further details of the method and its application to two problems with time-dependent
boundary conditions are given by Caldwell et al. [14]. A comparison of numerical results with
those from the enthalpy method is also included.

Heat-balance integral method (HBIM)

The HBIM was first proposed by Goodman [15, 16]. Goodman’s idea is to assume a
particular temperature profile, and integrate the heat equation over an appropriate interval to ob-
tain a set of heat-balance integral equations. The equations are then solved to obtain the motion
of the phase boundary. Later Bell [17] proposed a systematic method to improve the accuracy of
HBIM, which we will present below. The main idea is to subdivide the dependent variable 7,
and assume a linear profile within each subdivision. Accuracy can be improved by increasing
the number of subdivisions. Refinements of the method have been proposed by several authors,
including the exponential HBIM [18] and the refined integral method [19]. More recently, Ren
[20] successfully applied the method to the inverse Stefan problem. Convergence analysis of the
method can be found in [21].
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For simplicity, we only consider melting in the half-plane i. e. eqgs. (1)-(3), with f(¢) = 1.
A detailed description of the method for outward cylindrical and spherical solidifications can be
found in [22]. First we divide the range [0, 1] into N parts, that is:
i

N
and denote the corresponding position of the isotherm by Z,. Assume a linear profile within each
subdivision [Z;, Z; +1]:

T(x)zl_”_ X=Zin . Z
N N(Z; =Z;,)
Integrating eq. (4) over [Z; + 1, Z] gives:
Zi
¢ oy (3T) (T
z,, Ot ox )y ox ),

i+1 i1

<x<Z (26)

i+l

Taking the derivative outside the integral sign, we obtain:

Z;
i J.de_ZiTi +ZaTy |= ﬂ _(g
dr\ z 0x ) ox )z

i+1
Replacing T'by the linear profile and ensuring that the expression representing change

in flux is approximated by the discontinuous change in adjacent profile gradients, we obtain a
system of ordinary differential equations for the penetration depth Z,, namely:

4 1+ﬂ Zy+2Z, |= 2
dr o Zy—Z,

d 2 2
S(Z+Z,)= = , i=l...,N =2 27
o Gt =5 Z.,-Z @7)

i i+l i
d 2 2
e~ Zyy Zyo,—Zy,

It can be seen that the above system is stiff, at least for small # where the distances be-
tween adjacent isotherms are small. Hence a stiff ODE solver is required to solve the system.
Besides, a starting solution is required by the HBIM. Caldwell et al. [23] constructed special
starting solutions for outward cylindrical and spherical solidifications. Alternatively, one can
also use the starting solutions mentioned in the BIM.

Numerical results and discussions

We present and discuss the numerical results in applying the above methods to differ-
ent test cases.

Example 1

The first example corresponds to the melting in plane geometry with @ =0.2 and f(¢¥) = 1.
The analytic solution to the problem is:
T(x, 1) :1—%, s(t) =227 (28)

erf
where erf denotes the error function and A is the solution of the transcendental equation:

Jrdexp(A2)erf (1) =a (29)
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The numerical results for this example are presented in tab. 1. Note that an adaptive
ODE solver is used in the perturbation method and HBIM and so the time step is not constant.

Table 1. Melting in plane geometry (« = 0.2, f(r) = 1)

_wime | mvoc | oty | mM | erubion | v [ mmiv |

0.200 0.27407 0.27425 0.27456 0.27416 0.27410 0.27367
0.400 0.38759 0.38756 0.38802 0.38772 0.38764 0.38699
0.600 0.47470 0.47487 0.47509 0.47486 0.47476 0.47404
0.800 0.54814 0.54811 0.54850 0.54832 0.54821 0.54747
1.000 0.61284 0.61291 0.61318 0.61304 0.61292 0.61214
1.200 0.67133 0.67135 0.67166 0.67156 0.67142 0.67061
1.400 0.72512 0.72520 0.72543 0.72536 0.72521 0.72437
1.600 0.77519 0.77526 0.77549 0.77545 0.77529 0.77440
1.800 0.82221 0.82225 0.82250 0.82248 0.82232 0.82140
2.000 0.86669 0.86668 0.86697 0.86697 0.86680 0.86585

N 100 100 n. a. 8 32

At 0.001 0.001 n. a. 0.01 n. a.

Example 2

The second example corresponds to the melting in plane geometry with @ = 1.0 and () =
= exp(#) — 1. The analytic solution to the problem is:

T(x, t)y=exp(t—x)—1, s(H)=t (30)

The numerical results for this example are presented in tab. 2.

Table 2. Melting in plane geometry [ = 1.0, f() = exp(¢) — 1]

| tme | mea [ ey | oem [ ww

0.100 0.10000 0.10053 0.10002 0.10000
0.200 0.20000 0.20053 0.20003 0.20000
0.300 0.30000 0.30055 0.30005 0.29999
0.400 0.40000 0.40057 0.40006 0.39998
0.500 0.50000 0.50059 0.50008 0.49997
0.600 0.60000 0.60062 0.60009 0.59994
0.700 0.70000 0.70064 0.70010 0.69991
0.800 0.80000 0.80067 0.80011 0.79986
0.900 0.90000 0.90070 0.90013 0.89981
1.000 1.00000 1.00072 1.00014 0.99974

N 100 100 8

At 0.001 0.001 0.01

Example 3

This example corresponds to the outward cylindrical solidification with o = 0.2 and
() =0. There is no known analytical solution to the problem. The numerical results for this ex-
ample are presented in tab. 3.
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Table 3. Outward cylindrical solidification (o = 0.2, f(¢) = 0)

Time Enthalpy BIM Perturbation HBIM
0.200 1.26415 1.26504 1.26421 1.26349
0.400 1.36847 1.36932 1.36869 1.36766
0.600 1.44715 1.44786 1.44735 1.44603
0.800 1.51264 1.51318 1.51274 1.51114
1.000 1.56954 1.57010 1.56971 1.56785
1.200 1.62058 1.62108 1.62073 1.61863
1.400 1.66711 1.66759 1.66727 1.66492
1.600 1.71013 1.71057 1.71027 1.70770
1.800 1.75027 1.75067 1.75040 1.74760
2.000 1.78799 1.78839 1.78814 1.78512

N 100 100 n. a. 32

At 0.001 0.001 n. a. n. a.

Example 4

The last example corresponds to the outward spherical solidification with a = 0.2 and
f(#) = 0. There is also no known analytical solution to the problem. The numerical results for this
example are presented in tab. 4.

Table 4. Outward spherical solidification (a = 0.2, f(r) = 0)

Time Enthalpy BIM Perturbation HBIM
0.200 1.25469 1.25564 1.25469 1.25378
0.400 1.35092 1.35176 1.35105 1.34965
0.600 1.42217 1.42284 1.42225 1.42041
0.800 1.48054 1.48115 1.48064 1.47839
1.000 1.53087 1.53142 1.53096 1.52833
1.200 1.57556 1.57603 1.57561 1.57262
1.400 1.61595 1.61640 1.61601 1.61268
1.600 1.65308 1.65345 1.65308 1.64943
1.800 1.68739 1.68780 1.68746 1.68349
2.000 1.71954 1.71991 1.71959 1.71532
N 100 100 n. a. 32
At 0.001 0.001 n. a. n. a.

In the case of plane melting, as reflected in tab. 1 and 2, the methods employed give
good results in predicting the position of the moving boundary when compared with the analytic
solutions. In the cases of cylindrical and spherical solidification, where the analytic solutions
are not available, the methods employed give very similar results, as reflected in tab. 3 and 4.
The good agreement achieved gives us confidence in using the methods to solve the Stefan
problem numerically for different geometries.

Comments on the methods

Here we give some general comments on the methods, which can serve as a guideline
for solving a particular Stefan problem.

The enthalpy method is popular because of its easy formulation. As the governing
equation for the enthalpy is very similar to that for temperature, only little extra effort is required
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in programming. However, the iterative nature of the solution procedure makes the computa-
tional time longer. Besides, normally the enthalpy method produces unphysical oscillating solu-
tion near the moving boundary.

The BIM can effectively remove the moving nature of the boundary at the expense of
solving a more complicated equation. Besides, a starting solution is required in order that the
method can be started. One benefit of the BIM is that the computation time is comparatively
short and so it is possible to achieve higher accuracy by refining the mesh size.

The perturbation method can transform the Stefan problem into an ODE for the posi-
tion of the boundary. However, the formulation of the purturbation method is complicated and
cannot be done easily without symbolic mathematics packages. Besides, the perturbation
method only works for small Stefan numbers. Since a can be arbitrarily small by selecting 7.,
close enough to T}, a constraint on f{(¢) is also required. Experience suggests that requiring

max |f(#)| <1
0<t<tgna
is a good constraint. In the case f(#) = 1, it is found that by adding more terms in the perturbation
solution the method can work well for Stefan numbers as large as around 0.7.

The NIM can produce better results with comparatively small numbers of intervals.
However, as the number of intervals increases the iteration will become more and more difficult
to converge. Also the extension of the method to other geometries is difficult.

The HBIM gives good results for problems with constant boundary conditions. How-
ever, the extension to time-dependent problems is difficult. The complicated formulation also
makes it less attractive. For these reasons the HBIM is normally used for validation purposes.

Nomenclature

c — specifici heat, [kJkg'K™] X — spatial variable, [-]

f — local liquid fraction, [-] Z — position of isotherm, [-]
H — enthalpy function [= T +a'A(T)], [-]

H — [=—a/f(D)], [-] Greek letters

L — latent heat, [kJkg™']

N — spatial resolution, [] a — Stefan number [= (77— Tied)/L], [-]
r — radial variable, [] a' - =1a), [-]

s — position of moving boundary, [-] y — [=At(Ax)], [

T — temperature, [—]

T; — freezing temperature, [K] Superscript

Tret — reference temperature, [K]

t — temporal variable, [—] * — transformed variable
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