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The heat-balance integral method of Goodman is studied with two simple 1-D heat
conduction problems with prescribed temperature and flux boundary conditions.
These classical problems with well known exact solutions enable to demonstrate the
heat-balance integral method performance by a parabolic profile and the entropy
generation minimization concept in definition of the appropriate profile exponent.
The basic assumption generating the additional constraints needed to perform the
solution is based on the requirement to minimize the difference in the local thermal
entropy generation rates calculated by the approximate and the exact profile, re-
spectively. This concept is easily applicable since the general concept has simple
implementation of the condition requiring the thermal entropy generations calcu-
lated through both profiles to be the same at the boundary. The entropy
minimization generation approach automatically generates the additional require-
ment which is deficient in the set of conditions defined by the heat-balance integral
method concept.

Key words: heat-balance integral method, parabolic profile, unspecified
exponent, entropy generation minimization

Introduction

Heat-balance integral method (HBIM) of Goodman [1] is an effective method for solv-
ing heat diffusion problems with strong non-linearity either in the energy equation or at the
boundaries. The basic idea lies on a physically-based formulation of a thermal layer (this avoids
the inadequacy of the Fourier equation) and a prescribed temperature profile. These essential
ideas allow transformation of strong non-linear 1-D heat conduction problems into ordinary dif-
ferential equation with respect to the thermal layer temperature evolution [1, 2]. The common
approach is to use polynomial temperature approximations with respect to the space co-ordinate
with up to 4 boundary conditions allowing defining the profile coefficients as functions of the
thermal layer depth — see egs. (3a, b) too — namely:
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with
5(t=0)=0 (2)

where 6(7) is the depth of the thermal penetration layer; the crux of the Goodman’s method [1, 2]
based on physics of the heat conduction.

The conditions (1a) and (1b) are classical for the prescribed temperature and pre-
scribed flux problem, respectively. The fourth condition (1d) is know as “smoothing condition”
and works well when a polynomial approximation of 4" order is used. Generally, the accuracy of
the HBIM depends on the adequate choice of the approximating functions and the literature pro-
vided many examples of successful solutions [3-10]. The present work focus the attention on
HBIM solution of heat-conduction problems (isothermal condition and prescribed flux prob-
lems):

oT (x,1) Yy > T(x,t)

o ERCIE 0<x<8() (3a,b)
where 7(x, f) is preliminarily defined parabolic profile with unspecified exponent, namely:
T(x, t)y=a + b(1 + cx)" (3b)
The profile (3b) is very often used in the form (with 7(0, ¢) = T):
o=-T&0"T. =(1—f]n (3¢)
T,-T, o

Examples and analysis are provided by [11] where a clear algorithm to define the ex-
ponent n through additional constraints based on exact solutions was developed. This approach
allowed to obtain in a clear manner previously obtained solutions of specific cases such as those
solved by Braga et al. [12]. Further, applying the Langford criterion [13] for error estimation
yielded equations consistent with those from the additional physical constraints giving directly
the optimal value of the exponent n. Now, we address a physically based approach named en-
tropy generation minimization (EGM) in both the error estimation and the optimal exponent de-
termination.

Some preliminary thoughts prior to the problem statement give the basic ideas coming
from different areas of physics and modern thermodynamics. First of all, the EGM approach
conceived by Prigogine [14] and Bejan [15, 16] is extensively applied to various problems com-
monly known as thermodynamic optimization [17] and entropy generation analysis [18-21]. As
to the approximate solution of heat-conduction problems we credit to Esfahani [22] who has
performed a direct comparison of the entropy generation provided by exact and approximated
solutions to 2-D heat conduction problems with internal heat generation and his steps, therefore,
will be briefly outlined next.

The one-way destruction of the useful work is directly propositional to the rate of en-
tropy generation [15]:

I/Vlcost = Tngcn (4)
where T, is the absolute temperature of the ambient reservoir (7, = const.). Assuming a finite
size control volume in the 1-D problem and applying the second law of thermodynamics, the
mix entropy generation per unit time and per unit volume (Sg, ), i. e. the local entropy genera-
tion after Bejan [15] is:
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where g is the volumetric energy source [W/m?] and Vis the fluid velocity if a simple fluid flow
through a pipe is considered as example. Since we address only heat-conduction problems only
the heat energy terms of eq. (5) is at issue that yields simply the so-called local thermal entropy

generation (TEG) [15, 22].
2
sm =2 (G_Tj + & (6)

en 2| ox T
The TEG depends on the temperature profile and the function describing it which
mainly is affected by the method of solution [22]. Henceforth we credit to Esfahani [22] who de-
fined a dimensionless entry generation function which can be expresses for 2-D heat conduction
(hy — plate length and /, — plate width) problem as:
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The average normalized TEG is defined as:
B jAJ S, eendd
g”e;n(average) = (8)
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I
The average error is defined as [22]:
.” (@exact - @approximate )dA
Error = 4 9)

[[d4
A
where d4 is a dummy (variable) area of integration.

The present article implements the idea of EGM as a measure of approximation error
to solutions through the HBIM with the specific parabolic profile at issue. More exactly, the idea
is not to calculate the error of approximation but to use the assumption that irrespective of the
temperature profile (exact or approximate) used to calculate the local entropy generation higher
accuracy of approximation should be assured if their difference goes to a minimum or at least to
zero. The idea is that such a minimization could be performed through comparison of the global
entropies or their local (nodal) values at specific points of the thermal penetration layer. This
minimization procedure generates new conditions (constraints) affecting the approximate pro-
file but not available in the set of original ones defined by HBIM. This idea is explained and out-
lined next.

Problem statement and basic idea of TEG approach to HBIM

Using TEG definition — see eq. (6) — the local entropy generation in absence of volu-
metric heat generation [23] is:
o(T,T )=d—S—i(gradT)2 (10)
Y dr T2

where T, = 07/0x.
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The general problem can be formulated in the following way: Find such a function 7(x, #)
which satisfying required boundary conditions minimizes simultaneously the integral:

o, =[o(T,T,)d2 (11)
Q

over the whole domain 2.

The problems has been discussed extensively in [23] for steady-state 1-D heat conduc-
tion problems in view of adequacy of heat transfer equation derived through entropy
minimization approach and the Fourier equation. Now, this is not the case but some results of
[23] will be used to outline the problem at issue, namely:

(1) the entropy generation rate attains its minimum at steady-state irrespective of the way
through which the function 7(x, #) > T(x) = T, (see fig. 1a, b) is developed. Hence, at the
approximate solution might provide a minimum of the entropy generation rate calculated
through the approximate profile since at x > § we have grad7 =0,
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Figure 1. Schematic presentation of the idea to use the entropy generation rate in determination of the op-
timal approximate temperature profile by HBIM

(a) Temperature profile across the thermal penetration layer, (b) Control volume (grey borders) based on the
thermal penetration layer with a reference temperature at its walls (T, or T.); (c) Local entropy generation pro-
file through the thermal penetration layer expressed by the exact and the approximate solution. The entropy is
positive and that expressed through the exact solution exhibits the local TEG minimum used a standard value

(2) the exact solution also attains its minimum at steady-state (t — «) but we might suggest a
basic principle that the TEG rate calculated through the exact solution is the minimal even
though the heat transfer is time-dependent. This is implies that the TEG calculated through
the exact solution is the standard and the approximated solution should approach it with a
minimal error through adequate choice of the approximate profile,
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(3) the above physically-based statements mean that, and
4) Ao = o(T, T, ~o(T, T), =0 (12a)

which implies a zero error of approximation in accordance with eq. (9)
or at least:
Ao =0(T,T,), —o(T,T,). — minimum (12b)

i. e. a minimal error of approximation.

This approach will be used for creation of additionally physically-based constraints
leading to optimal parabolic profile of HBIM which practically means a way to define the appro-
priate exponent 7.

Test of the concept through simple examples

Several simple 1-D heat conduction problems will be used to exemplify the entropy
generation approach in creation of additionally physically-based constraint leading the appro-
priate exponent.

Some of them were solved in [11] and the results obtained in this work will used di-
rectly in the development of the present analysis.

Example 1. Prescribed temperature problem (PT) at x =0
The HBIM solution of eq. (3a) with 7= T at x = 0 and 7{(x, 0) = 7., provides [11]:

T(x,t)y=T,+T,-T,) (13a)

1o *
( w/aw/Zn(n+1)J
8 =~at\2n(n +1) (13b)

Whilst the exact solution is [11, 24]:

with

T(x,t)=T, +(T, - T, )erf(Lj (14)

Wat

The local entropy generation rate calculated through the approximate solution is:
2 2(n-1)
AP
o(T,T,), =2 J 0 (15a)
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Whilst that calculated through the exact solution is:
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Then, the function Ac(7, T,) has to be minimized through an adequate choice of the
exponent z. The calculation Ao (7, T,) of expressed through (12a) and the profiles (15a, b) and it
minimization with respect to # is complex and practically not necessary since two basic physical
assumptions simplifying the solution should be formulated, namely:

(1) at x = 0 the local entropy generation rate, irrespective of the temperature profile used for its
calculation, has a maximum — fig. 1a,

(2) at x =6 the local entropy generation rate, irrespective of the temperature profile used for its
calculation, has a minimum. With the approximate profile, for instance, o(7, T,), = 0 (see
15b and fig. 1b) since the HBIM defines 7, = 0 at x =9, and

(3) therefore, if we may find a solution to minimize the difference between the differences
between the maxima in TEG calculated by both profiles this would assure minimal
differences over the entire thermal layer.

In accordance with the simplifying assumptions 1 and 3 we may assume the case when
the approximate solution matches the exact one and the following condition is obeyed locally at
x=0:

Ao =Ac (g =0(T,T,), —o(T,Ty). =0, x=0 (16)

This provides simple expressions of the function describing the TEGs, namely:

2 2
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The condition Ao, _ o) = 0, see eq. (16), and (17a), and (17b), yields:
2 2
n 1
—| = —— (18)
( 8 j (JE Jat j

CH 19
@nn (19)

Recall, the relationship (19) was provided by the condition g, (x =0)=g.(x=0) used in
[11] with the same problem. Further with the relationship defined by HBL, i. e. § = (at)"*[2n(n +

+1)]'? we have:
0 m =Pt ]) = =2 ~175 (20)
Jat n-2

Example 2. Prescribed flux boundary condition at x = 0

and

This gives the relationship:

Similarly to the previous problem both temperature profiles at issue are HBIM approx-
imate solution of eq. (3a) with —A(07/0x) = Fatx=0and T(x, 0)=T,_is [11]:

T=T E(l—%j 7 2

) - *
An ﬂ,n[ Mm}
8 =~at\n(n+1) Q21c)

(21a, b)

with

and the exact solution [11, 24]:
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Then the locale entropy generations are as follows:
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At x = 0 the condition o,_(T,T}), = 0,-o(T, T}). simply yields:

BENG)
Y.
[ a(x=0) ] [Te(x:O) ]

In fact, from (24a) it follows that we have to satisfy the condition:

T, x=0) T e(x=0) (24b)

(22)

2 (23b)

=0 = [ a(x= 0)] [Te(x=()) ]2 =0 (248.)

The condition (24b) is exactly expressed as:

T. +55—T c 2 82 (25a, b)

An Ialm \/_ J_

The result (25b) and that coming from HBIM solution (21¢) simply give:

J_ \/_— (n+):>/ ‘/_ —n= _nz3.65 (26)

Recall, the condition (24b) was used in [11] as additional physical constraint assuring
the definition of the appropriate exponent of the parabolic profile.

Comments to the test performed with examples 1 and 2

The condition Ao =o(7, T,), — o(7T, T,). = 0, x = 0 practically means that:

or, Y (or, Y
AG, =7 % - % =0 27)

x=0
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(&
conditions we search for minimization of Ac. To this end, the expression (27) is equivalent to:

In the case of PT problems (7= T, x = 0) we have T, = T (s = T, and under optimal

2 2
poo|(FLY (LY | _(on _enyen  an) o8
ox ox » ox  Ox 0x 0x
From (28) the only rational condition is:
oT, _ o7, (29)
Ox|,_, Ox|._,

which is equivalent to g, (x = 0) = g, (x = 0) and provides the relationship 5/(a?)"? = nn'? = [2n(n +
+ 1)]1/2'

Therefore, the requirement to minimize the difference in the entropy generation rates
at the point where they exhibit their maxima is physically equivalent to the condition the heat
fluxes at the same point to be equal irrespective of the temperature profiles used in the calcula-
tions. In this context, to avoid some ambiguities, we recall that the volumetric entropy genera-
tion based on a volume (see fig. 1¢) matching the thermal penetration layer may be expressed
through a reference temperature 75 as:

2
sm =2 (ﬂ) (30)

cn
g T 02 Ox

The reference temperature could be either 7, or 7. Thus, the only variable of interest
representing the optimal approximating profile remain in the (0T/0x), expressed through it. This
approach leads to (27) and with the condition minimizing the difference in the entropy genera-
tion rates (see (16) and (28)) at x = 0 provides the optimal value of the profile exponent.

Further, the prescribed flux problem, through the condition Ao,_, = 0 generates the
condition 7, = Ty = T used in [11] and conceived from a physical point of view.

In general, the requirement to minimize the difference in the thermal entropy genera-
tions by the approximate and the exact profiles automatically generates additional physical con-
straints defining the optimal exponent of the parabolic profile at issue. This is an important re-
sult, since the condition Ac,_, = 0 inherently contains the condition to minimize the difference
in the surface temperatures with prescribed flux and vice versa. The main issue is that both addi-
tional constraints come automatically through application of a unique physically based condi-
tion; to minimize the difference in TEGs at the point where the profiles exhibit their maxima.

Results outline and ideas thereof

This point is commonly named “Conclusions” but we will slightly extend its content
beyond a brief notation of the principle results of the work and drawing some basic principle and
ideas coming from this research note.

The simple idea of EGM through the approximate profile of HBIM was simply tested
with two classical examples with known exact solutions. A basic condition derived from this
general principle is the requirement the local entropy generation rates calculated through both
profiles to be the same at x = 0. This condition work very well and confirms results obtained
through constraints [11] based on additional physical assumptions.

Further, the requirement Ac =o(7, T,),—o(7, T,). = 0, x = 0 automatically generates the
condition which is deficient in the set provided by the HBIM; in case of PF problem and g, (x=0) =
= ¢, (x =0) with PT problem. With this additional condition the exponent of the parabolic profile
can be defined definitely.
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Beyond, the results obtained here a principle question rises: Is it possible to apply the
method to more complex problems? The task is to create simple HBIM solutions which might
replace the huge exact solutions and replace the time-consuming numerical procedures thus
providing useful sub-routine functions of complex computational fluid dinamics codes. Cer-
tainly, the first results here are promising and a successful step forward is the condition Ao (7,
T,) =0, x = 0 used in this work. The latter simply implies that even though the vast analytical
expressions of the exact solutions [24] the approach Ac(7, T,) = 0, x = 0 needs only the values
of 7(0, #) and T,(0, #) which are always simple expressions.

Finally, a more general question rises: Does the approach work with other profiles, es-
pecially the so-called “hybrid profiles” [9, 25-27] where a special function with a tuning param-
eter is used as a term multiplying the basic HBIM profile? To this end, we only release the idea
but solutions of specific problems are beyond the present work.
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Nomenclature Greek letters
ep e 2.1
a  — coefficient in the prescribed temperature 2‘ - Iﬁermal diffusivity, [m’s ]71
profile, [K] - 'ermal. conductivity, [Wm K]
b — coefficient in the prescribed temperature o — dimensionless temperature
profile, [K] [=(T-T)NT;—T.)] [see eqgs. (3b)
c — coefficient in the prescribed temperature and (7)], [-]
profile, [m '] o — thermal layer depth, [m]
F(t) — surface flux , [Wm?] o(T,T,) — local entropy genereglog rate
g — volumetric energy source, [Wm] (see eq. (10)), [Wm . K]
hy  — slab thickness — see eq. (7) , [m] o(T.T,) — globaﬁl1 entry generation rate, ,
Iy — slab width — see eq. (7) , [m] [WK ] . .
n — exponent in the prescribed temperature Ao — difference in local entrqg)yi%eneratlon
profile , [-] rates (see eq. 16), [Wm K]
— surface heat flux provided by the .
o approximate temperature profile, [Wm 2] Subscripts
q.  — surface heat flux provided by the exact a — approximate
temperature profile, [Wm 2] e _ exact
Sen — entropy generation rate, [WK '] b _ penetration
Sgen — volutzlsetg]c entropy generation rate, exact _ exact solution
= [Wm K ] . approximate — approximate solution
Sgen — dimensionless volumetric entropy
generation rate (see eq. 7), [—] Special symbols
T — temperature, [K]
T, — temperature defined by the exact — — it follows that
solution, [K] = — can be expresses as
T, - temperature of the undisturbed medium, [K]
t — time, [s] Abbreviations
¥ — fluid velocity, [ms™']
Wyest — lost work, [W] EGM - entropy generation minimization

b — co-ordinate, [m] HBI — heat-balance integral
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HBIM - heat-balance integral method PT — prescribed temperature
PF — prescribed flux TEG - thermal entropy generation
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