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This article reconsiders aspects of the analysis conventionally used to establish ac-
curacy, performance and limitations of the heat balance integral method: theoreti-
cal and practical rates of convergence are confirmed for a familiar piecewise heat-
-balance integral based upon mesh refinement, and the use of boundary conditions
is discussed with respect to fixed and moving boundaries.

Alternates to mesh refinement are increased order of approximation or non-poly-
nomial approximants. Here a physically intuitive high-order polynomial heat bal-
ance integral formulation is described that exhibits high accuracy, rapid conver-
gence, and desirable qualitative solution properties. The simple approach
combines a global approximant of prescribed degree with spatial sub-division of
the solution domain. As a variational-type method, it can be argued that heat-bal-
ance integral is simply “one amongst many”. The approach is compared with sev-
eral established variational formulations and performance is additionally assessed
in terms of “smoothness”.
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Introduction

The semi-analytical heat-balance integral method (HBIM) proposed by Goodman [1]
provides approximate functional solutions to transport phenomena governed by partial differen-
tial equations. Spatial boundary conditions are satisfed by the chosen approximant, together
with an integral (weak) form of the governing conservation equation(s). The resilience of the
method over the past 50 years to the emergence of increasingly sophisticated numerical method-
ologies and exponentially increasing computer power is a testament to the soundness of its in-
herent simplicity, based as it is upon the fundamental conservation laws of the problem to be
tackled (which makes it appealing to scientists and engineers alike) together with simple under-
lying approximants that are easily manipulated and enumerated. These two principles make it
readily applicable to a wide range of problems, in particular those containing non-linear contri-
butions that comprise the more realistic descriptions of industrial process models.

Goodman’s [1] approach was to construct quadratic temperature profiles for transient
one-dimensional heat transfer, with and without phase change, later successfully applied to sev-
eral two-phase melting problems by Goodman et a/. [2]. In 1964 Goodman published his exten-
sive survey of integral methods applied to heat transfer problems, of which the HBIM is one [3].

Since Goodman’s proposal [1] many papers have been published that describe im-
provements to the accuracy of the original method, in addition to numerous descriptions of ap-
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plications of the method. Early papers described modifications to the basic quadratic profile, in-
cluding moderate increases in the degree of the approximant, and from the mid 1970s the focus
shifted to spatial and temperature sub-division coupled with low-order piecewise approximants.

Goodman’s (first) refinement of the HBIM developed cubic and quartic polynomial
profiles for transient pure heat conduction in one-dimension [4]. Additional constants appearing
in the higher-order profiles were evaluated by satisfying extra derived conditions (without obvi-
ous physical meaning) at a specified penetration depth beyond which no heat transfer took
place. Hills [5] generalised the integral method by characterising the solidification process by
two parameters (thickness of the solidified layer and temperature of the outer surface) as op-
posed to the conventional single-parameter characterisation using thickness alone. The ap-
proach, validated against experimental evidence [6], was very effective at dealing with a wide
range of cooling conditions. Langford [7] gave an accuracy criterion for the HBIM using
higher-order approximants based upon satisfying a number of derived conditions at the
phase-change boundary.

Noble [8] suggested a combination of spatial sub-division and low-order piecewise
approximants as an alternative refinement of the HBIM. Bell [9, 10] discussed spatial subdivi-
sion for both plane and radial geometries and in each case demonstrated the effectiveness of the
solution using only a few sub-divisions and piecewise linear approximants, hard to better even
to this day. The approach also circumvents the acknowledged sensitivity of the HBIM to the se-
lected approximant. Bell [11] introduced the use of temperature sub-division and the modifica-
tion was successfully applied to the two-phase solidification problem of estimating the penetra-
tion depth of frost [12]. Bell et al. [13] presented an analysis that established the formal
convergence of the HBIM, using the earlier refinement [9], to the analytic solution for pure heat
conduction in a semi-infinite medium. This was later generalised to include phase-change by
Mosally et al. [14].

This short review focussed upon implementation, and neglected a myriad of reports on
application areas of the HBIM, the extension from Cartesian coordinates to both cylindrical and
spherical coordinates typified by, amongst others, Caldwell [15-18] and Bell [10], and the use of
non-polynomial approximants. In this vein, this paper discusses the use of polynomial approxi-
mants of arbitrary order within the context of the HBIM. A simple technique, in the spirit of the
original concept, is proposed for generating the additional equations (with physical meaning) re-
quired to evaluate the extra coefficients appearing in higher-order approximants. A highly accu-
rate global approximation is obtained with excellent convergence properties. The approaches of
Goodman [4] and Langford [7] would be very complicated, and not unambiguous, to apply to an
approximant of arbitrary degree.

Model problem
To place the present proposal, the popular piecewise refinement [13] is implemented

together with several familiar variational methods. Features of the method are demonstrated by
application to a dimensionless problem describing single-phase melting of ice:

ou U

—= , O<x<s(t), t>0 1
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U(x,0)=0, x>0 (4)

G_U:_ —, x=s(t), t>0 (5)
Ox
Equation (1) describes heat flow in the liquid region, eqgs. (2) and (3) set the fixed
boundary (x = 0) and moving melt front [x = s(¢)] temperatures, eq. (4) sets the initial tempera-
ture, the Stefan condition (5) describes heat absorption at the melt front (8 = L/c(T}, — T,,) is the
ratio of latent to sensible heat). The exact solution to model (1)-(5) is:

"rf( )

U(x,t)=1- ot @) , 0<x<s(t), t20 (6)

s(t)=2a~t, t>0 (7)

where « is the root of the equation n'/2aerf(a) expa? = 8. The model and its solution are easily
related to a physical description by the variable changes X=Ix, t = Pt/x, T=T,,+ (T, — T,,)U, and
S=1Is.

Heat-balance integral method

For the model (1)-(5) the conventional piecewise linear HBIM [13] divides the domain
[0, s] into n sub-intervals of length s/n on which the temperature U is approximated by a
piecewise linear profile:
v=v,, + n = xi )0 _VH), X, <x<x;, i=l...,n ®)
s

v;=U(x;,1),v,=1,v,=0and x; = is/n. Generating a heat-balance integral on each sub-interval:

L L S ©)
, ot ox|,._, ox P
replacing U by the profile (8), with piecewise constant temperature gradient:
vl s V) g e, &Y S (10)
Ox|,_ s OX|yy dt
yields a system of n ordlnary differential equations for v,,...,v, ; and s
2y, =2v. .
s _ 21° vy =2Vin ¥V 0 42 (11)

§— =
dt 2i+1 v, —v,,
s ds 2nv,_,
dt @2n-1Dv, , +2np
From eqs. (11) and (12), v; can be expressed as a three-term recurrence relation:

v, =V — Vi —viy)f,, i=n-2, n-=3,...,1,0 (13)

(12)

where n+n—l
n
2 77=_ﬂ (14)

n+77—i—1’ v

;=
n—1
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Repeated application of eq. (13), with v, =1, yields a polynomial equation for 7:

n—1 TS
-1 —2 =

n = (n+)..(n+k)
On solving eq. (15) for n, the approximate temperature profile is obtained from eqs.
(13) and (14), and the melt front is found by solving eq. (12):

s:izm*ﬁ, at=— " (16)

2n+2n—1 \2n+2n—1

Figure 1(a) shows the spatial relative error for three successive refinements, plus the
error of a high-accuracy solution obtained via Richardson’s extrapolation. Figure 1(b) shows
log, error, effectively the number of significant digits (obtained at little additional arithmetic
cost). Extrapolation almost doubles the number of significant digits. However, what is evident is
the wide range of accuracy across the spatial domain, changing by at least one order of magni-
tude for the basic solutions, and by two orders of magnitude in the extrapolated solution. This
uneven distribution of accuracy is, perhaps, a less familiar feature of the HBIM, and is not par-
ticularly desirable.
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Figure 1. Spatial (relative) error in temperature for » = 10, 20, and 40 sub-intervals
(a) error, (b) log,.error

In the numerical frame work developed above, the moving boundary condition (5) is
explicitly incorporated into the formulation. Due in part, perhaps, to the use of time-dependent
constants in the approximants such as Goodman’s [3]

v =a(x—s) + b(x —s)? (17)
earlier authors have tended to use the derived moving-boundary condition:
2
ou o0U
— | = , x=s(t), t>0 18
( = j B ®) (18)

based upon the governing differential equation being satisfied on the moving boundary. Strictly
this is not true, and use of eq. (18) can lead to significant variation in solution accuracy [19], par-
ticularly as the Stefan constant 3 varies.
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Table 1. Accuracy of boundary-condition combinations as a
function of 5; A — best, B — average, C — worst [19]

1 | Eq.(5 | Eq.(5) A B C C A
2 | Eq.(5) | Eq.(18) Fail

3| Eq.(5 | Eq.(19) A B C C A
4 | Eq.(18) | Eq.(5) B A A B B
5 | Eq.(18) | Eq.(18) C C B A C
6 | Eq. (18) | Eq.(19) C C B A C

Figures 2(a) and 2(b) show the variation in error of the melt front parameter estimates
provided by the six boundary-condition pairs listed in tab. 1 (option 2 fails completely). The col-
umn ”Stefan” identifies the equation used to drive the moving boundary, and the column "HBI”
denotes the condition used to evaluate 0v/0x at x = s(f) in the HBI solution process. The most ac-
curate option is dependent upon  and the final 5 columns of tab. 1 quantify the intervals. The
conclusion of these observations is that naive implementation of the HBIM will not maximise its

approximation potential.
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Figure 2. Error in melt front parameter a* for boundary condition combinations [19]

(a) small B, (b) large B

High-order polynomial approximations

€1ror.

Given the high accuracy but poor error distribution provided by mesh refinement of the
HBI, here we seek high accuracy by ’order’ with the additional goal of improving uniformity of

We seek a polynomial solution v of degree N > 2 to egs. (1)-(5)
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X

v(x,t)= %ai(l ——j , 0<x<s(¢) (19)
i=1 s

where a,,..., ay are constants to be determined, v satisfies the spatial condition (3), and enforcing
the spatial conditions (2) and (5) requires:

=

Il
—_

a, =1 (20)

a, =ﬁs$ @1)

Equation (21) implies the familiar square-root behaviour for the motion of the phase-change
boundary, s(¢) = (2a,#/8)"?, and so (a,/23)'"? is an estimate to the melt front parameter o.

If N=2[1] then eq. (20), a, + a, = 1, is combined with the standard HBI of the partial
diferential equation (1):

Ox?

in which U is replaced by the approximant v. In this way the two coefficients a, = 612 — 7 and
a, =8 — 61" are obtained, and:

v(x,t):(I—EJ{\/E—7+(8—\/H)(1—£H, 0<x<s(t) (23)
S S

Figure 3 provides a comparison of the exact and approximate solutions, egs. (6) and
(23), for B =1. The temperature profiles — fig. 3(a) — and melt front histories — fig. 3(b) — exhibit
the familiar close agreement.

s, S 22
a_de:Ja U i (22)
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Figure 3. Exact and quadratic HBIM solutions to the model (1)-(5),5=1,atzr=1
(a) temperature profile, (b) melt front history

Spatial sub-division

To generalise the standard HBI (22) for N > 2, and evaluate a,,..., ay, we sub-divide
[0, s] into N — 1 cells of size s/(N — 1) and establish a HBI on each cell:

Y Y X
a_de:I CU =Y 1" o1 N1 (24)
e ot g Ox? Ox -
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where x; =is/(N—1). The sub-division does not generate a piecewise approximant — egs. (8) and
(9) — but forces local energy balances for a global approximant on a set of sub-domains as op-
posed to a global balance across the entire domain [0, s]. As N increases so eq. (24) is a statement
of an increasingly local (strong) heat-balance. On replacing U by the approximant (19), eq. (24)
can be written in the form:

_’:zla,-[aiAmi—Bm,.Fo, m=0,....N -2 o5
4 = m—m)(m+n)—(n—m—1)'(im+i+n)
mi ni* (i +1) 6
B _i[n-m)' —(n-m-1)""]
mi — n,-,l

where (n=N-1,m=j-1)

Equations (20) and (25) describe a system of N non-linear equations for a = [a,,..., ay]’
of the form f () = 0. f=[f] ... f]? denotes the functional form of the N equations:

N
fi=%a, -1
i=1
fm+2:§:ai[a1Ami_Bmi], m=0,...,N—2
i=1

readily solved by Newton’s method (see the section Results and discussion). If N=2 (m = 0) this
formulation recreates Goodman’s original quadratic [ 1]. However, in Goodman’s solution the «,
are functions of time whereas here they are independent of time due to the choice of basis in eq.

(19).
Variational methods

The foregoing description resembles established variational solvers for PDEs. To
highlight advantages of the proposed formulation, two familiar weighted-residual techniques
are applied to egs. (1)-(5): Galerkin (weights are approximant basis functions) and collocation.
All three approaches shares the advantage that a functional is not required, which for time-de-
pendent problems can be difficult to develop (e. g. Rayleigh-Ritz selects constants @; to mini-
mise a positive definite functional associated with the governing PDE).

Galerkin

The governing eq. (1) is multiplied by the weight function (1 — x/s)m and integrated
over the spatial domain to generate N — 1 identities:

S m M m 2
J(l_fj 5_de=M1_£j 0 Yde, m=0,...N -2 (27)
g S ot g s) O0x?

This reduces to the conventional form (22) when N = 2 (m = 0). With increasing m
more emphasis upon the evolving heat transfer process is given to the effect of the temperature
profile “far” from the phase-change boundary (the basic HBIM formulation gives equal weight
to all points in the domain [0, s]). Equations (27) and (20) may be used to determine a,,...,a,. On
substituting the polynomial profile (19) into eq. (27), we obtain the algebraic system (25), where
now:




18 Wood, A. S., Mosally, F., Al-Fhaid, A.: On High-Order Polynomial Heat-Balance ...

~ i
S mti)mti+l)

0, i=1
B.. =1 j(i—
m =9 0ZD
m+i—1

(28)

mi

Collocation

The residual r= U, — U, is set to zero at N — 1 equi-spaced internal nodes x; = js/N,
j=1,..., N—1,to define equations for a,..., ay the boundary conditions on temperature are
satisfied by the approximant (19). Replacing U by v in the residual and enforcing the N — 1
nodal conditions r[v(x;)] = 0 generates the system (25) with (note that m = — 1):

AA=Km+D@_m+q”

mi N N
0, i=1
B = +1)2
mi KFD@—E—J , i=L...,N
N

Results and discussion

Table 2. Melt parameter o*, temperature v(x = s/2), incident
For the established piecewise heat flux v'(x = 0), and melt front s, at 7= 1, using a piecewise

linear HBIM and 8 = 1, tab. 2 lists  linear approximant

estimates to o [~(a,/2)"?], temper- " a* v Ovlox s
ature v at x = s/2, incident heat

flux, and s. The results converge at 10 0.6139 | 04575 | -0.9038 1.2279

-1

the expected rate O(r °) [14]). Ta- 20 | 06170 | 04552 | -0.9072 12339
ble 3 shows the same four parame-

ters computed using the three 40 0.6185 0.4540 —0.9090 1.2370
high-order, methods, for various

values of N. The methods give the Exact 0.6201 0.4528 -0.9108 1.2401

expected very similar results to the

p arameter f:stlma"[es listed, con- Table 3. Melt parameter *, temperature v(x = s/2), incident
verging rapidly with N. For N=15  peat flux v'(x = 0), and melt front s, at # = 1, using high-order
the results are one to two orders of  polynomials

magnitude better than the piece-
agnt . p_ N o* v Ov/ox s

wise-linear approach with n = 40

(8 times as many equations), and Sub-division | 2 | 0.6365 | 0.4526 | -0.9346 | 1.2730
conform to the quadratic form for 3 | 0.6197 | 0.4549 | -0.9108 | 1.2393
N = 2. Collocation is marginally 4 | 0.6200 | 0.4528 |-0.9107 | 1.2400
worse due to the pointwise (as op- 5 | 0.6201 | 0.4528 | -0.9108 | 1.2401
posed to element-based) nature of Galerkin | 2 | 0.6365 | 0.4526 |-0.9346 | 1.2730
the established balance (in this 3 0.6198 | 0.4549 | —0.9111 | 1.2396
case forcing the residual to zero). 4 | 0.6201 | 0.4529 |-0.9108 | 1.2401
The high-order methods provide 5 | 0.6201 | 0.4529 | -0.9108 | 1.2401
very similar values for the coeffi- | cgjocation | 2 | 0.6325 | 04500 |-0.9487 | 1.2649
cients a;, shown in tab. 4, that are 3| 06159 | 04528 | -0.9227 | 1.2318
consistent with the data in tab. 3. 4 0.6198 | 0.4529 | —0.9097 | 1.2395
Column-by-column the a; con- 5 | 0.6202 | 0.4528 | -0.9104 | 1.2403
verge rapidly with N, in particular Exact| 0.6201 | 0.4528 | -0.9108 | 1.2401

5 ) . . .
a, — 2a”.
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Table 4. Coefficients a; for sub-division, Galerkin, and collocation

N a, a, a; a, as ag ay
2 | 0.81025 | 0.18975
3 | 0.76794 | 0.33530 | —0.10324
. 4 | 0.76882 | 0.29949 | —0.03470 | —0.03361
Sub-division | 5| (76006 | 029438 | —0.01583 | —0.05681 | 0.00930
6 | 0.76896 | 0.29559 | —0.02238 | —0.04324 | —0.00230 | 0.00407
7 | 0.76896 | 0.29567 | —0.02300 | —0.04131 | —0.00593 | 0.00625 | —0.00063
2 | 0.81025 | 0.18975
3 | 0.76832 | 0.33400 | —0.10232
, 4 | 0.76894 | 0.29949 | —0.03526 | —0.03317
Galerkin 5 | 0.76896 | 0.29472 | —0.01659 | —0.05628 | 0.00919
6 | 0.76896 | 0.29560 | —0.02241 | —0.04329 | —0.00287 | 0.00401
7 | 0.76896 | 0.29566 | —0.02293 | —0.04147 | —0.00577 | 0.00618 | —0.00062
2 | 0.80000 | 0.20000
3 | 075864 | 034611 | —0.10475
i 4 | 076819 | 0.30132 | —0.03484 | —0.03468
Collocation | 5| (76023 | 029312 | ~0.01374 | ~0.05803 | 000943
6 | 0.76897 | 0.29552 | —0.02226 | —0.04327 | _0.00310 | 0.00415
7 | 0.76895 | 0.29571 | —0.02315 | —0.04105 | _0.00616 | 0.00633 | —0.00063

A familiar characteristic of high-or-
der polynomial approximants is their
tendency to oscillate and thereby intro-
duce spurious (numerical) artifacts into
the solution profile. Figures 4 and 5
show the spatial 10g10|relative error|
distribution for values of N using the
three high-order schemes. This broadly
indicates the number of digits of accu-
racy at each node x;. Approximately
one digit of accuracy is gained with
each order of the approximant, with the
Galerkin approach giving slightly
better accuracy than the sub-division
approach for high values of N. For odd
orders (N =3, 5, 7, and 9 are shown),
sub-division (fig. 4) maintains a (desir-

|
-

Log,|relative error|
j%* b
== = =
nn
o

%i

04 05

06 07

08

0.9

Fraction of melt depth

Figure 4. logmlerror|pr0files at ¢t =1 (sub-division)

able) smoother spatial error distribution. Establishing elemental heat balances appears to coun-
teract the natural tendency of high-order polynomial approximants to oscillate due to a naturally
increasing number of turning points. In other words, sub-division maintains the correct shape
and resists the introduction numerical artifacts into the solution that have no physical meaning.
Figure 6 shows the observed relative error (including the sign) for each of the three
high-order formulations across the solution domain. The formulations exhibit fairly distinct error
profiles and across a range of orders, , it is not easy to identify one particularly dominant method.
Table 5 lists the mean 10g|error| and standard deviation (SD) for the error profiles shown in fig. 6.
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Figure 5. log10|err0r|profiles att=1; (a) Galerkin, (b) collocation

The bold values indicate the best approach for each specified value of N, showing a mid-range
dominance by Galerkin, with spatial sub-division emerging as machine precision is approached —
the Galerkin system of non-linear equations becomes increasingly ill-conditioned.

However, for all listed orders, N, the standard deviation of Galerkin is highest,
(crudely) indicating a wider “spread” of precision across the solution domain. For N=6 and N =
=10, collocation provides remarkably consistent precision.

Table 5. Mean and standard deviation of data presented in fig. 6

v Sub-division Galerkin Collocation
Mean SD Mean SD Mean SD
2 -2.13 0.52 -2.13 0.52 -2.12 0.41
3 -2.60 0.41 -2.60 0.44 -3.08 0.53
4 —4.10 0.54 -3.90 0.40 -3.90 0.22
5 —4.58 0.36 -4.98 0.48 -5.21 0.70
6 —6.42 0.56 -6.52 0.60 -5.81 0.11
7 —6.65 0.36 -7.25 0.39 —6.83 0.50
8 -8.78 0.66 -9.12 0.51 -7.96 0.16
9 -8.78 0.35 -9.86 0.53 -8.63 0.44
10 | -11.03 0.23 -11.77 0.37 -10.32 0.08
11 —-10.96 0.35 -12.05 0.38 —-10.67 0.48
12 -13.04 0.29 -12.13 0.43 -12.73 0.54
13 -13.20 0.35 -11.83 0.49 —12.65 0.50

Both mean and SD provide spatially-transparent measures of tendency and variation.
Figure 7 displays the variation in slope (first difference) of the 1og|error|. At this point it is clear
that the Galerkin response a spatially more oscillatory and, except for N=2, 4, 6, and 8, sub-di-
vision shows a considerably more moderate fluctuation (that even betters that of collocation). It
is a fairly subjective analysis but the indication from these crude tools is that spatial sub-division
smoothes the behaviour of the error, thus leading to more consistency in accuracy across the so-
lution domain.
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0 0.5 1 0 0.5 1 0 0.5 1

Figure 6. Orders N=2to 13; e=log 10|error| spatial distribution for 1 — blue sub-division, 2
—red Galerkin, and 3 — green collocation (color image see on our web site)
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sub-division, 2 —red Galerkin, and 3 — green collocation (color image see on our web site)
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Conclusions

This work has indicated how high-order polynomial approximants based upon spatial
sub-division can be very easily constructed for use with the HBIM to provide a highly accurate
and rapidly convergent numerical solution process for solving (certain) transport problems. The
sub-division formulation, in general, provides the largest number of siginificant digits (for a
given polynomial order N) and the smallest standard deviation, and the use of local (elemental)
heat balances is to be preferred over weighted heat balance integrals (Galerkin) in order to gen-
erate approximations having smooth spatial error distributions. This suggests that it may be the
preferred methodology. However, in the round there is no clear favourite, and there is probably
an equally compelling (or not) argument that would suggest that allhigh-order implementations
perform similarly. However, the small differences already noted are currently being investi-
gated in more detail by means of optimisation techniques in order to tease out the “best” model
formulation.

Nomenclature

a; — constants, [—] t — time, [—]

c — specific heat capacity, [Jk%’lK’l] V — polynomial approximant, [—]
L — latent heat of fusion, [Jkg | X, x  —distance [m]; [-]

/ —nominal length, [m]

N — degree of polynomial approximant, [—] Greek letters

n —number of spatial elements

S, s —melt front location [m]; [-] — melt front parameter, [—]

T, U —temperature [°C]; [-] — Stefan constant, [-]

N R ™R

T, — temperature at fixed boundary, [°C] — thermal diffusivity, [m’s™']
T — melt temperature, [°C] — time, [s]
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