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Numerical simulations are conducted for two-dimensional steady-state double dif-
fusive flow in a trapezoidal porous cavity, submitted to axial magnetic field. The
Darcy equation, including Brinkmamn and Forchheimer terms account for viscous
and inertia effects, respectively is used for the momentum equation, and a
SIMPLER algorithm, based on finite volume approach is used to solve the pres-
sure-velocity coupling. An extensive series of numerical simulations is conducted in
the range: 1°<Ra<10° 1<Ha<10’°, Da=10", N =1, and Le = 10. It is shown
that the application of a transverse magnetic field normal to the flow direction de-
creases the Nusselt number and Sherwood number. Illustrative graphs are pre-
sented.
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Introduction

Double-diffusive natural convection in porous media has received considerable atten-
tion due to its numerous applications in geophysics and energy related engineering problems.
Such types of applications include natural circulation in isothermal reservoirs, aquifers, porous
insulation, heat storage beds, grain storage, extraction of geothermal energy, and thermal insula-
tion design, efc. One important example of double-diffusive convection can be found in material
solidify processes. Since solidification of alloys and crystals necessary involves the simulta-
neous flows of momentum, heat, and solute. The appearance of thermal and concentration gradi-
ents near the solid-liquid interface can causes a uniform density distribution and convection-dif-
fusion motion there, which may have a profound effects on the solid structure as it is crystallized
from the liquid state. Electromagnetic field has been used in the metal industry to control micro-
structures solidification and to reduce or eliminate natural convection in the melt. In crystal
growth process, the objective is to adjust the process and characteristics of the magnetic filed in
order to eliminate the deleterious unsteadiness in the melt motion and to achieve a steady melt
motion which produces uniform and controllable dopant and contaminant concentrations in the
crystal. A major advantage of a magnetic field is that it can be tailored to achieve different field
strengths and orientations at different positions in the melt and at different stages during the
growth of a crystal.

The combined heat and mass transfer in porous media is limited, because of complexi-
ties involved in double-diffusive natural convection. Most of previous studies in this topic use
Darcy’s law for solving flow within the porous medium. Natural convection of heat and mass
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transfer in a square porous cavity subjected to constant temperature and concentration has been
investigated by Trevisian et al. [1]. The authors use the Darcy’s model for modeling the flow in
porous medium. The numerical study has been carried out for a given range of Darcy-Rayleigh
number, Lewis number, and buoyancy ratio. Lage [2] studied the effect of the convective inertia
term on Benard convection in a porous medium. The author shows that inertia term included in
the general momentum equation has no effect on the overall heat transfer. Agrawal et al. [3] dis-
cussed thermal and mass diffusion on hydromagnetic viscoelastic natural convection past an im-
pulsively started infinite plate in the presence of a transverse magnetic filed. Helmy [4] studied
the unsteady laminar free convection flow of an electrically conducting fluid through a porous
medium bounded by an infinite vertical plane surface of constant temperature. Shanker et al. [5]
presented the effect of mass transfer on the MHD flow past an impulsively started infinite verti-
cal plate. Ram et al. [6] studied the MHD free convection flow past an impulsive started vertical
infinite plate when a strong magnetic field of uniform strength was applied transversely to the
direction of flow. The first work in MHD using the state space approach was done by Ezzat
[7-9], where the heated vertical plate problem was solved using a numerical inverse Laplace
transform. Ezzat et al. [8] formulated the state space approach for the one-dimensional problem
of viscoelastic magnetohydrodynamic unsteady free convection flow with the effects on a
viscoelastic boundary layer flow with one relaxation time. Bian et a/. [10] considered the inter-
action of an external magnetic field with convection currents in a porous medium. The porous
medium was modeled according to Darcy’s model. It is found that the application of a magnetic
filed, modifies the temperature and flow fields significantly. The purpose of the present paper is
to study the double-diffusive natural convection flow behaviour and its effects on heat and mass
transfer in a trapezoidal porous cavity submitted to transverse magnetic filed. The flow is mod-
eled using the generalized model of Darcy-Brinkman-Forchheimer. Thermosolutal heat transfer
within trapezoidal cavity heated at the bottom and cooled at the inclined top part was investi-
gated by Boussaid et al. [11]. The convective heat transport equation was solved by alternating
direction implicit (ADI) method combined with a fourth-order compact Hermitian method.
Natarajan et al. [12] analysed the natural convection flow within a trapezoidal enclosure where
the bottom wall is heated (uniformly and non-uniformly) and vertical walls are cooled by means
of a constant temperature bath whereas the top wall is well insulated. The consistent penalty fi-
nite element method has been used to solve the non-linear-coupled partial differential equations
for flow and temperature fields with both uniform and non-uniform temperature distributions
prescribed at the bottom wall. The effect of Prandtl number in the variation of local and average
Nusselt numbers was found to be more significant for Prandtl numbers in the range 0.07-0.7
than 10-100. Baytas et al. [13] studied the natural convection flow behaviour and its effects on
the heat transfer and temperature distribution within a non-rectangular enclosure filled with a
porous medium and which is inclined with an arbitrary angle from the vertical. The enclosure
chosen is of trapezoidal cross-section with paralleled cylindrical top and bottom walls at differ-
ent temperatures and plane adiabatic sidewalls. Flow and heat transfer characteristics (stream
lines, isotherms, and average Nusselt numbers) are investigated for a wide range values of the
Rayleigh number, inclined angle and cavity aspect ratio.

Problem definition and governing equations

The problem considered is a two-dimensional natural convection flow in a trapezoidal
porous cavity filled with a binary fluid, see fig. 1. Different types of boundary conditions have
been employed. Dirichlet conditions are prescribed along the top and the bottom surfaces for
temperature and concentration. On both left and right surfaces, Neuman, i. e., zero gradient con-
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ditions are assigned to temperature and concentration. A uniform magnetic field is applied
transversally. Both velocity components are equal to zero on boundaries.
For simpler analysis, some assumptions are made:
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Figure 1. The physical model and coordinate system

— the binary fluid is assumed to be Newtonian incompressible and to satisfy the Boussinesq
approximation,

— the flow in the cavity is laminar and two-dimensional,

— the porous medium is supposed to be isotropic homogeneous and in thermodynamic
equilibrium with the binary fluid,

— the Soret and Dufour effects are neglected, and

— the magnetic Reynolds number of the fluid is neglected.

Then applying the theorem of conservation and introducing the dimensionless param-
eters as given below:
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We obtain the following dimensionless governing equations as given also by Lage [2]:
— continuity equation

ou i o _ 0 (1)
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The initial and boundary conditions for the dimensionless equations are:
— initial condition (at 7 = 0)

0=0,=0
O=Q,=0; for 0<Y <1 andOSXS% (6)
U=V=0
— boundary conditions
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Numerical procedure

The coupled transient equations are solved to obtain a steady-state solution. When a
convergent result is approached, the transient terms vanish and the steady-state equations are
solved. The differential equations are discretised in space with the control-volume finite differ-
ence method described by Patankar [14]. The resulting finite difference scheme has the form:

Ayp, = Appp + Awpw + Axon + Asps + S 3

Expressions for the coefficients in eq. (8) may be found in reference [14]. The
advection-diffusion part of the coefficients 4y, Ay, Ay, and Ag is modified for stability accord-
ing to the power law scheme. The source term S includes the values of at previous time step. The
discretisation technique is well known and S detailed description is not needed. The linear sys-
tem derived from the conservation equations are solved using line-by-line method. As the mo-
mentum equation is formulated in terms of the primitive variables (U, V, P) the iterative proce-
dure includes a pressure correction calculation method to solve the pressure-velocity coupling
(the SIMPLER technique [14]). The simulations are generally performed using 101 x 101 sinu-
soidal grid. It is realized that this relatively coarse grid is adequate to resolve all details of the
flow structures in the cavity. The selected mesh size should only be viewed as a compromise be-
tween accuracy and computational time. The convergence of the numerical solution was moni-
tored locally. The max-norm was used for the velocity components U, V, temperature @, and
concentration @ the convergence criterion at each time step is:

max|(U,V, 0,0)" —(U,V,0,d)
| U.V,0,0)

Ig 105 ©)

in which i and 7 + 1 denote two consecutive iterations at the same time step.
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The average heat and mass transfer at the walls are given in dimensionless terms by the
Nusselt and Sherwood numbers defined as:

174

1/4
Nu, = j (@j dX, Sh,= j (5_@) dx (10)
0 aY Y=0 aY Y=0

0

Test validation

The numerical accuracy of  Taple 1. Darcy model (pure heat transfer, N = 0)
the present study has been

checked over a large number of
purely thermal convection in a
square fully porous cavity, the
results has been compared with

the results of earlier studies in 10 1.07 1.08 1.06
tabs. 1 and 2, for the Darcy and 50 _ 1.958 1.936
combined Darcy-Brinkman rep-

resentation of the porous me- 100 3.09 32 2.98
dium ﬂow: The valldatlgn is per- 500 ~ 2.38 232
formed using 81 x 81 sinusoidal

grid. It may be seen from the re- 1000 13.41 12.514 12.49

sults, that the agreement with ref-
erences (Lauriat er al. [15];
Nithiarasu et al. [16]) is excellent in most cases. Indeed, our results present a difference less than
2% in comparison with Nithiarasu ez al. [16] results.

Table 2. Darcy-Brinkman model (pure heat transfer, N=0, Pr =1)

10 10°¢ 1.07 1.08 1.06
100 10°¢ 3.06 3.00 2.98
1000 10°¢ 13.2 12.25 12.11

10 1072 1.02 1.02 0.99
100 1072 1.7 1.71 1.68
1000 1072 4.26 4.26 4.24

Results and discussion

The objective in this section is to present a sample of results in order to illustrate the ef-
fect of Rayleigh number (Ra) and Hartman number (Ha) on the cell formation processes and heat
and mass transfer characteristics. This study is limited to fluid with Prandtl number Pr = 0.149
that correspond to a titanium based alloy and Lewis number Le = 10. The conductivity ratiois A =1
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and the representative porosity is fixed to & = 0.4 for porous medium. The inertia parameter Cyis
calculated using the Ergun model [17] C;= 1.75/(150&*)"> which means that in the present case
C;=0.56.

Influence of Rayleigh number

In fig. 2, the effect of Rayleigh number is illustrated for 4 =1, Da= 10", N=1, and
Le =10. The results are presented in terms of velocity vectors, isotherms and iso-concentration
contours for different values of Rayleigh number. The flow directions in the graphs can be easily
identified. Due to the thermal and solutal boundary conditions considered here, the bottom wall
has a higher temperature and concentration as the top inclined wall. As a result, the direction of
the flow is counterclockwise. As the Rayleigh number is increased, both temperature and solutal
buoyancy are augmenting each other and thus they accelerate the flow counterclockwise.
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Figure 2. Velocity-vectors, isotherms, and isoconcentrations vs. Rayleigh number; Pr = 0.149
Ha=0, Da=105N=1,Le=10
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Influence of Hartman number

Figure 3 illustrates typical streamlines, velocity vectors, isotherms, and concentration
lines forRa=10°,Da=107,Pr=0.149, Le=10, N=1,and Ha=0, 40, and 80, respectively. The
influence of a magnetic field is apparent from this figure. Figure 3a shows the results obtained
for Ha= 0 "absence of magnetic field”. The flow, isotherms and isoconcentrations are similar to
those obtained by other investigators [18]. The resulting flow regime is characterized by a
boundary layer of constant thickness. Also, the parallelism of the flow and the existence of lin-
ear thermal and solutal stratification are clearly illustrated. Due to the thermal and solutal
boundary conditions considered here, the bottom wall has a higher temperature and concentra-
tion as the top inclined wall. As a result, the direction of the flow is counter clockwise. When the
magnetic field is applied, the flow recalculation is progressively inhibited by the retarding effect
of the electromagnetic body force (figs. 3b and 3¢). More quantitative comparison are presented
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Figure 3. Velocity-vectors, isotherms, and isoconcentrations vs. Hartman number; Pr = 0.149,
Ra=105,Da=105N=1,Le=10
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Figure 4. Effect of Hartman number on solution
profiles along midplan; ¥=0.5, Pr=0.149, Ra=105,
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Conclusions

filed.

here in terms of V-velocity, temperature, and
solute profiles. All the profiles are plotted
along the middle horizontal line of the enclo-
sure, i. e., along the line of Y=0.5.

Figure 4 compare profiles obtained for
Da= 107 at different Hartman numbers
Ha =0, 20, and 60. The effect of Hartman
number on the convection field is well re-
flected by the progressive reduction of the
velocity, temperature and solute concen-
tration gradients as the Hartman number is
increased.

Another view of the effect of Hartman on
heat and mass transfer is found in fig. 5,
where Nusselt and Sherwood numbers are
plotted as a function of Ha. The analysis of
this figure indicates that for small values of
Ha, the boundary layer regime prevails. As
the Hartman number increases, the electro-
magnetic body force increases which sup-
presses progressively the strength of the con-
vective motion, and thus boundary layer
regime is followed by the double diffusive
regime for which Nusselt and Sherwood
numbers tend to one.
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Figure 5. Effect of Hartman number on the
Nusselt and Sherwood numbers; Pr = 0.149,
Ra=105Da=105N=1,Le=10

Double-diffusive natural convection in trapezoidal porous cavity, with transverse
magnetic field has been studied numerically. The present model has been successfully validated
with results of references. The convective of heat and mass transfer is strongly inhibited with in-
creasing magnetic field. The overall heat and mass transfers decrease for increasing magnetic
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The present analysis is focused on the influence of a limited number of dimensionless
parameters. As an extension of this work, it is particularly relevant to take into account the buoy-
ancy ratio (), the Prandtl number (Pr), the Lewis number (Le), and correlate heat and mass
transfer.

Nomenclature
A4 — aspectratio (= H/L), [-] X, Y — dimensionless Cartesian coordinate, [—]
B — magnetic field, [T] x, y — Cartesian coordinate, [m]
c - concentrat%on, ['kgm*3] Greek letters
AC — concentration difference between plates
(=C -Gy, [kgm™] a  — thermal diffusivity, [m2s!]
Cr inertial coefficient, [-] Bs — isobaric coefficient of solutal expansion
C, — specific heat at constant pressure, [Jkg'K] fluid, []
— mass diffusivity, [m?s™'] pr — isobaric coefficient of thermal expansion
Da - Darcy number (= KH?), [-] fluid, [-]
Grg — solutal Grashof number (= gBAT. fP’/vQ)z, -] ¢ - porous media porosity, [-]
9rT — thermal Grashof number (= g8 ATH/v?), [-] ©® - dimensionless temperature, []
g  — acceleration due to gravity, [ms2] A — conductivity ratio
H - cavity high, [m]  _ v — kinematic viscosity, [m2s!]
Ha - Hartman number [= Be(oH/v)2], [-] p  — density, [kgm™]
K — permeability, [m?] o  — electrical conductivity of the liquid, [sm™']
L — cavity width, [m] 7 — dimensionless time, [-]
Le - Lewis numbgr (= Pr Sc), [-] @ - dimensionless concentration
N - buoyancy ratio (: GrS/GrT), [—] {:[C— (C1 + CQ)/Z]/AC}, [_]
Nup — overall Nusselt number, [—]
Pr - Prandtl number (= v/a) Subscripts
Ra — Rayleigh number (= Gr{Pr), [-] £ fluid
Sc  — Schmidt number (= v/D), [-] B “rl medi
Shy — overall Sherwood number, [] p porous media
1 — heated surface

T  — temperature, [K]

. 2 — cooled surface
AT — temperature difference between plates 0 — average value

=T, -1y, [K]

¢t — time, [s] Superscripts
U, V — dimensionless velocity in (X, Y) direction, [] . L .
u, v — velocityes in x, y direction, [ms™'] ¢ — time iteration
V - velocity vector, [ms']
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