THERMAL SCIENCE: Vol. 13 (2009), No. 1, pp. 5-12 5

EFFECTS OF OHMIC HEATING AND VISCOUS DISSIPATION ON
STEADY MHD FLOW NEAR A STAGNATION POINT ON AN
ISOTHERMAL STRETCHING SHEET

by

Pushkar Raj SHARMA and Gurminder SINGH

Original scientific paper
UDC: 532.543.5:536.628:66.011
BIBLID: 3354-9836, 13 (2009), 1, 5-12
DOI: 10.2298/TSCI0901005S

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on
steady flow of a viscous incompressible electrically conducting fluid in the presence
of uniform transverse magnetic field and variable free stream near a stagnation
point on a stretching non-conducting isothermal sheet. The governing equations of
continuity, momentum, and energy are transformed into ordinary differential equa-
tions and solved numerically using Runge-Kutta fourth order with shooting tech-
nique. The velocity and temperature distributions are discussed numerically and
presented through graphs. Skin-friction coefficient and the Nusselt number at the
sheet are derived, discussed numerically, and their numerical values for various
values of physical parameters are compared with earlier results and presented
through tables.
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Introduction

Flow and heat transfer of an incompressible viscous fluid over stretching sheet find ap-
plications in manufacturing processes such as the cooling of the metallic plate, nuclear reactor,
extrusion of polymers, efc. Flow in the neighbourhood of a stagnation point in a plane was initi-
ated by Hiemenz [1]. Crane [2] presented the flow over a stretching sheet and obtained similar-
ity solution in closed analytical form. Fluid flow and heat transfer characteristics on stretching
sheet with variable temperature condition have been investigated by Gurbka er al. [3].
Watanabe [4, 5] discussed stability of boundary layer and effect of suction/injection in MHD
flow under pressure gradient. Noor [6] studied the characteristics of heat transfer on stretching
sheet. Chiam [7] discussed the heat transfer in fluid flow on stretching sheet at stagnation point
in presence of internal dissipation, heat source/sink and Ohmic heating. Chamka et al. [8] con-
sidered Hiemenz flow in the presence of magnetic field through porous media. Sharma et al. [9]
investigated steady MHD flow through horizontal channel: lower being a stretching sheet and
upper being a permeable plate bounded by porous medium. Mahapatra et al. [10] investigated
the magnetohydrodynamic stagnation-point flow towards isothermal stretching sheet and re-
ported that velocity decreases/increases with the increase in magnetic field intensity when free
stream velocity is smaller/greater than the stretching velocity. Mahapatra ez al. [11] studied heat
transfer in stagnation-point flow on stretching sheet with viscous dissipation effect. Attia [12]
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analysed the hydromagnetic stagnation point flow on porous stretching sheet with suction and
injection. Pop et al. [13] discussed the flow over a stretching sheet near a stagnation point taking
radiation effect.

Aim of the present paper is to investigate effects of Ohmic heating, viscous dissipa-
tion, and variable free stream on flow of a viscous incompressible electrically conducting fluid
and heat transfer near a stagnation point on an isothermal non-conducting stretching sheet.

Formulation of the problem

Consider steady two-dimensional flow of a viscous incompressible electrically con-
ducting fluid in the vicinity of a stagnation point on a stretching sheet in the presence of trans-
verse magnetic field of constant intensity B,. The stretching sheet has constant temperature 7,
linear velocity u,,(x) and free stream velocity is U(x). It is assumed that external field is zero, the

electric field owing to polar-
ization of charges and Hall
effect are neglected. Stretch-
ing sheet is placed in the
plane y =0 and x-axis is taken
along the sheet as shown in
fig. 1. The fluid occupies the
half plane (y > 0).

The governing equations
of continuity, momentum,
and energy (Pai [14], Bansal

x  [15], Schlichting et al[16],
etc.) under the influence of
uniform transverse magnetic

w = CX 0
/

Stagnation point field (Jeffery [17], Bansal
Figure 1. Physical model SS]) with Ohmic dissipation
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The boundary conditions are:
y=0 u=u,(x)=cx, v=0, T =T,

y—ooe u=UX)=bx, T=T, @
Method of solution
Introducing the stream function  (x, y) as defined by:
u=5_l// and v=—a—v/ (5)

oy 0x
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and the similarity variable

n=pls and ) =Vers) (6)

into the egs. (2) and (3), we get:
fﬂl+f]‘”_f!2_M2(f!_l)+iz :0 (7)
0" +PrO'f +0,PrEcM?(f' —1)2 +PrEc f"? =0 (8)

where O, =0 or 1 is the Ohmic heating parameter. It is observed that eq. (1) is identically satisfied.
The corresponding boundary conditions are reduced to:

J©0)=0, (0)=1, 6(0)=1, f'(®)=4, O(=)=0 (€))
The governing eqgs. (7) and (8) with the boundary conditions (9) are solved using
Runge-Kutta fourth order technique (Jain et al. [19], Krishnamurthy et al. [20], Jain [21], etc.)
along with shooting technique (Conte et al. [22]). First of all, higher order non-linear differential
egs. (7) and (8) are converted into simultaneous linear differential equations of order first and
they are further transformed into initial value problem applying the shooting technique. Once
the problem is reduced to initial value problem, then it is solved using Runge-Kutta fourth order
technique.

Skin-friction

Skin-friction coefficient at the stretching sheet is given by:

Cr=—22 = xf"(0) (10)

pevev

where 7, = (0 u/0y + Ov/0x),. is the shear stress at the stretching sheet.

Nusselt number

The rate of heat transfer in terms of the Nusselt number at the stretching sheet is given by:

v q
Nu=,|——2I% —_9'0 11

\/:K(TW -T.) © (1
where q,, = —«(0T/0y),—

Particular cases

(1) In the absence of magnetic field i. e. M = 0, the results of the present paper are reduced to
those obtained by Pop et al. [13] and Mahapatra et al. [11].

(2) In the absence of magnetic field and viscous dissipation i. e. M =0 and Ec = 0, the results of
the present paper are reduced to those obtained by Mahapatra et al. [11].

(3) At 2 =1, there is no formation of boundary layer as the surface velocity is equal to fluid
velocity (Pai [14]).

Results and discussion

Equations (7) and (8) are solved using Runge-Kutta fourth order technique for differ-
ent values of M, A, Ec, and O,, when Pr = 1.0 taking step size 0.005.
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Table 1. Values of f”(0) for different values of
2 are compared with the results obtained by
Pop et al. [13] and Mahapatra et al. [11]

0.1 —0.9694 —0.9694 —0.969386
02 | -09181 —0.9181 —0.9181069
0.5 —0.6673 —0.6673 —0.667263
2.0 2.0174 2.0175 2.01749079
3.0 4.7290 4.7293 4.72922695

Table 2. Values of f"(0) for different values
of L and M

0.1 | —0.969386 | —1.0678983 -1.321111
0.5 | -0.667263 | —0.7118914 | -0.8321261
2.0 | 2.017502 2.0777247 2.249103

Table 3. Values of —0'(0) for different values of
A are compared with the results obtained

by Mahapatra et al. [11] when Pr=1.0

0.1 0.603 0.602157
0.5 0.692 0.692445
2.0 0.974 0.978726

Table 4. Values of —0'(0) for different values
of A, M, and Ec when Pr=1.0 and O, =1.0

0.0 | 0.602157 | 0.228906 | —0.144344
1.0 | 0550806 | —0.217832 | —0.986471
2.0 | 0474701 | —-1.037764 | —2.550229

=20 -0'(0)

0.0 | 0.978726 | 0.060048 | —0.858629
1.0 | 0.985968 | —0.205953 | —1.397875
20 | 1.001650 | —0.858963 | —2.719576

It is observed from tab. 1 that the numeri-
cal values of f"(0) of the present paper when
M = 0 are in good agreement with those ob-
tained by Pop et al. [13] and Mahapatra et al.
[11].

It is observed from tab. 2 that shear stress at
the sheet decreases due to increase in the mag-
netic field intensity when A < 1, while it in-
creases with the increase in the magnetic field
intensity when A > 1. It also increases due to
increase in A when the magnetic field intensity
is fixed.

It is seen from tab. 3 that the numerical re-
sults of —0'(0) of the present paper when M =
=0, 0,=0, and Pr=1.0 are in full agreement
with the results obtained by Mahapatra et al.
[11].

It is seen from tab. 4 that the Nusselt number
decreases with the increase in the magnetic field
intensity when A = 0.1. For A = 2.0, due to in-
crease in the magnetic field intensity, the
Nusselt number slightly increases in the ab-
sence of viscous dissipation; while it decreases
when Ec = 1.0 and 2.0. Hence reversal effect in
heat transfer rate is observed in presence of
Ohmic heating.

Table 5 reveals that the Ohmic heating
(when O, = 1.0) decreases the Nusselt number
when only viscous dissipation is considered
and effect is more pronounced as magnetic
field intensity increases.

Figure 2 shows that the boundary layer
thickness decreases considerably as A in-
creases in the absence of magnetic field inten-
sity, which is shown by dotted vertical lines at
the points where /" reaches at boundary condi-
tion. Hence for A > 1, the boundary layer is
thin. Figure 3 depicts that for A = 0.1 with the
increase in the magnetic field intensity, the
fluid velocity decreases which is fully agree
with physical phenomena. However, reverse
phenomena is observed for A = 2.0, which is
due to the fact that inverted boundary layer is
formed for A >1i. e. when free stream veloc-
ity is greater than stretching sheet parameter
(Mabhapatra et al. [10, 11]).

It is observed from fig. 4 that at A = 0.1
with the increase in magnetic field intensity,
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Table 5. Values of —9'(0) for different values of 1, M and
O, when Pr =1.0 and Ec =2.0

1.0 | —0.507073 | —0.986471 | —1.054078 | —1.397875

2.0 | —1.235249 | —2.550229 | —1.568088 | —2.719576

fluid temperature increases and is even higher than
the sheet temperature. In the absence of viscous dis-
sipation and A = 2.0, the results in tab. 4 show that

) =20
08—
1=05
04+
A =01
0 — ———
10 2.0 30 7

Figure 2. Velocity distribution vs. 7 when
M=0.0
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Figure 3. Velocity distribution vs. 1 for different values of 1

the fluid temperature decreases with the increase in the magnetic field intensity because inverted
thermal boundary layer formation but when Ec # 0.0 with the increase in magnetic field inten-
sity, fluid temperature increases near the sheet and is approximately same as the distance from
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Figure 4. Temperature distribution vs. 7 for different values of A when Ec = 2.0 and O, = 1.0
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sheet increases. Hence a reversal characteristic in fluid temperature is observed in the presence
of Ohmic heating. The thermal boundary layer thickness increases with the increase in magnetic
field intensity for A = 0.1 and change is negligible for A =2.0.

It is seen from fig. 5 that with the increase in the viscous dissipation parameter, fluid
temperature increases and effect is more pronounced with the increase in magnetic field intensity,
because of the effect of Ohmic heating when A = 0.1. The change in the thermal boundary layer
thickness is negligible. Figure 6 shows the effects of Ec and M on fluid temperature when 4 =2.0.
The temperature profiles are same as in the case of 1 = 0.1 except that steep increase in fluid tem-
perature near the sheet is observed when A = 0.1 in comparison to the case when A = 2.0.
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Figure 6. Temperature distribution vs. i for different values of M and Ec when A= 2.0

Figure 7 represents that the fluid temperature increases in the presence of viscous dis-
sipation and Ohmic heating. Increase of fluid temperature near the sheet is observed in the pres-
ence of Ohmic heating, when A = 0.1 in comparison to the case when A = 2.0.

Conclusions

Fluid velocity increases and boundary layer thickness decreases with the increase in A
i. e. when the free stream parameter is dominating. Fluid velocity decreases due to increase in
magnetic field intensity when A= 0.1, while it increases due increase in the magnetic field inten-
sity when A = 2.0.
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Figure 7. Temperature distribution vs. 7 for different values of Ec and A when M = 2.0

The skin-friction coefficient at the sheet decreases due to increase in the magnetic field
intensity when 4 = 0.1, while reverse behaviour is observed when 4 = 2.0.

Fluid temperature increases due to increase in magnetic field intensity when A = 0.1.
Fluid temperature decreases with the increase in the magnetic field intensity in the absence of
viscous dissipation, but with the increase in magnetic field intensity fluid temperature increases
near the sheet and is approximately same as the distance from sheet increases in the presence of
viscous dissipation when A = 2.0. Steep increase in fluid temperature near the sheet is observed
when A = 0.1 in comparison to the case when A = 2.0.

The thermal boundary layer thickness increases with the increase in magnetic field in-
tensity when A = 0.1 and negligible change is observed when A = 2.0. Fluid temperature in-
creases due to increase in the Eckert number and effect is more pronounced at higher Hartmann
number, irrespective values of 1. The effect of increase in the Eckert number on thermal bound-
ary layer thickness is negligible.

Ohmic heating parameter cannot be neglected for large values of the Eckert number
and Hartmann number.

Nomenclature

B, — magnetic field intensity, [T] x,y  — Cartesian coordinates along x- and
b — free stream velocity parameter, [s] y-axes, respectively, [m]

Cy — skin-friction coefficient, []

G, — specific heat at constant pressure, [Jkg K] Greek letters

c — stretching sheet parameter, [s™'] 0 — dimensionless temperature

Ec — Eckert number [= ¢2*C(T,, — T..)], [-] (T—T)T,— T, [-]

f — dimensionless stream function, [—] K — thermal conductivity, [Wm K]
M — Hartmann number [= (6 B2/pc)'?], [-] A — ratio of free stream velocity parameter
Nu — Nusselt number, [-] and stretching sheet parameter, []
0, — Ohmic heating parameter, [-] u — coefficient of viscosity, [kgms ]
Pr — Prandtl number (= uC,/x), [-] v — kinematic viscosity (= u/p), [m2s]
g, - rate of heat transfer, [Wm™] n — similarity variable [= (¢/v)!2y]

T — fluid temperature, [K] o — density of fluid, [kgm3]

T, — temperature of stretching sheet, [K] o — electrical conductivity , [Wm=2K]
T, — free stream temperature, [K] Ty — shear stress, [Pa]

U(x) - free stream velocity, [ms] .

u, v — velocity components along x- and Superscript

y-axes, respectively, [ms1] ,

— differentiation with respect to
U, — velocity of stretching sheet, [ms'] P g
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