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The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids
has been investigated in the taking account of effects of surface tension, when the
whole system is immersed in a uniform horizontal magnetic field. The streaming
motion is assumed to be two-dimensional. The stability analysis has been carried
out for two highly viscous fluid of uniform densities. The dispersion relation has
been derived and solved numerically. It is found that the effect of viscosity, porosity
and surface tension have stabilizing influence on the growth rate of the unstable
mode, while streaming velocity has a destabilizing influence on the system.

Key words: viscosity, porous medium, streaming velocity, magnetic field, surface
tension, instability

Introduction

The problem of the Kelvin-Helmholtz discontinuity between two superposed fluids is
of prime importance in various astrophysical, geophysical and laboratory situations. The Kel-
vin-Helmbholtz discontinuity arises when air is blown over mercury or when highly ionized hot
plasma is surrounded by slightly cold gas or when a meteor enters the earth’s atmosphere.
Chandrasekhar [1] has given a detailed account of problems as investigated by different re-
searchers for incompressible fluids. The influence of viscosity on the stability of the plane inter-
face separating two incompressible superposed fluid in uniform horizontal magnetic field, has
been studied by Bhatia [2]. He has carried out the stability analysis for two fluids of equal kine-
matic viscosities and different uniform densities. A good account of hydrodynamic stability
problems has also been given by Drazin et al. [3] and Joseph [4].

In recent years, the investigation of flow of fluids through porous media have become
an important topic due to the recovery of crude-oil from the pores of reservoir rocks. A great
number of applications in geophysics may be found in the books by Phillips [5], Ingham et al.
[6], and Neild ef al. [7]. When the fluid permeates a porous material, the gross effect is repre-
sented by the Darcy’s law. The Rayleigh instability of a thermal boundary layer in flow through
porous medium has been considered by Wooding [8]. Kumar [9] has studied the stability of two
superposed Walters B viscoelastic fluid-particle mixture in porous medium. The stability of two
superposed Walters B’ viscoelastic fluids in the presence of suspended particles and variable
magnetic field in porous medium has been studied by Sharma ez a/. [10]. Khan et al. [11] have
studied the stability of two superposed viscoelastic fluids in the presence of horizontal magnetic
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field. More recently, Kumar et al. [12] have studied the instability of two rotating viscoelastic
superposed fluids with suspended particle in porous medium.

The importance of the Kelvin-Helmholtz problem has been demonstrated recently by
Bhatia et al. [13] while studying the stability of two superposed viscous fluids. D” Anglo et al.
[14, 15] have studied the Kelvin-Helmoholtz instability problem in superposed dusty plasma.
Benjamin et al. [16] have given an excellent reappraisal of the classic Kelvin-Helmholtz prob-
lem in hydrodynamics and have given a Hamiltonian formulation of the problem. Allah [17] has
investigated the effects of heat and mass transfer on the Kelvin-Helmholtz instability in
hydromagnetics.

El-Sayeed [18] recently, investigated the electro-hydrodynamic instability of two
superposed viscous streaming fluids through porous medium.

The aim of this paper is to study the Kelvin-Helmholtz discontinuity between two vis-
cous conducting fluids in a uniform horizontal magnetic field through a porous medium taking
account of effects of surface tension.

Formulation of the problem and perturbation equations

We consider an incompressible, viscous infinitely conducting fluid having streaming
velocity U = (U, U,, 0).The prevailing magnetic field is also taken to be two-dimensional, uni-
form, and acting along the direction in which streaming motion takes place i. e., H=(H,, H,, 0).

The relevant linearized perturbation equations are:
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where ti(u, v, w), h(h,, hy, h,),6p, and 5p are perturbations in velocity, magnetic field H, density
p and pressure p, respectively . Here T, y and g = (0, 0, —g) are the surface tension, coefficient of
viscosity, and acceleration due to gravity, respectively. In above equations d(z — z,) denotes
Dirac’ function, Q is the permeability of porous medium, and ¢ is the medium porosity. Analyz-
ing the disturbance into normal modes, we seek solutions whose dependence on x, y, and ¢ is
given by:

f(z)e ik x+iky y+nt (5)

where f{(z) is some function of z, k, and k, are the horizontal numbers, =2+ k?),and n is the
growth rate of harmonic disturbance.

Eliminating some of the variables from the above equations, we obtain an equation in
w as:
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where we have written n' = n + i(kU)

Superposed fluids

We consider the case when two superposed fluids of uniform densities p,, p,, and vis-
cosities yy, i, magnetic fields H,,, Hy and H,,, H,,, and with streaming velocities Uy, U, and
Uy, Uy, are separated by a horizontal boundary at the interface z = 0. Therefore, in both the re-
gions z < 0 and z > 0 of constant densities, eq. (6) becomes:

(D> - k) D* - M)Y)w =0 (7)
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and v=u/p is the coefficient of kinematic viscosity.
Since w must be bounded both when z — o (in upper fluid) and z — —o° (in lower
fluid), the solutions of eq. (7) can be written as:

w, = A;nje® + B nje M7 (z<0) )

w, = A,nhe ™% + B,nje M27 (2> 0) (10)

where 4,, 4,, B;, and B, are constants, and M,, M, are positive square roots of eq. (8 ) for the two
regions and: - .
n =n+i(kU,) ny =n+i(kU,) (11)

Boundary conditions

The above equations must satisfy certain boundary conditions , requiring that on inter-
face w, Dw and y(D, + k,)w must be continuous.
Also by integrating eq. (6 ) across the interface z= 0 ,we obtain another condition as:
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where w, and (Dw),, are the unique values of w,, w,, and Dw,, Dw,, at z = 0.
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Applying the boundary conditions to the solutions 9 and 10, we obtain:
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On eliminating the constants 4,, B,, 4,, and B,, and evaluating the determinant of
given matrix of the coefficients in eqs. 13 to 16, we obtain characteristic equation:
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where V,, and V,, are Alfven velocities in the two fluids. On evaluating the dispersion relation
(17), we obtain the characteristic equation which is quite complex, particularly as both M, and
M, involve square roots. Therefore ,we carry out the stability analysis for highly viscous fluids,
as in the non-streaming case of superposed fluids earlier by one of the authors (Khan and Bhatia
[11]). We can write:
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neglecting square and higher order terms in 1/v/ ,.
Substituting the values of M, and M, in eqs. 17 and 18, we obtain the dispersion rela-
tion in dimensionless form as:

Won® + Wen® + Won + Wen® + Wond + Wyn* + Wyn® + Won? + Win + Wy =0 (19)

where the coefficients Wy, Wq, W,, Wy, Ws, Wy, W5, W,, W,, and W,, are quite complicated. These
coefficients are not given here as they are quite lengthy expression involving the wave number &
and the parameters characterizing the effects of surface tension, permeability of porous medium,
viscosity, and streaming velocity.

Results and discussion

The eq. (19) is quite complex. In order to study the effects of various physical parame-
ters on the growth rate of unstable modes, the numerical solution of this equation has been
sought to locate the values of n (positive real part) against wave number £, for several values of
the parameters involved. The numberical calculations are presented in figs. 1-6, where we have
taken a potentially unstable arrangement by taking o, = 0.20, o, = 0.80 for fixed H, =5.0, H, =
=10.0, V,,=0.2, V,,=0.5and ¢ = 0.1. These calculations are presented in figs. 1-6, where the
growth rate (positive real part of n) is plotted against the wave number & for several values of U,
U,, T, Q,X,,and X,. In figs. 1 and 2 the growth rate is given against the wave number for U, and
U, (streaming velocities) taking fixed values of 7'(surface tension) =4.0, O (permeability) = 1.2,
X, (viscosity) = 4.0, and X, (viscosity) = 8.0. From fig. 1, we find that the growth rate increases
on increasing the streaming velocities (U, and U,) for same values of the wave number. We thus
find that streaming velocity has destabilizing influence on the Kelvin-Helmholtz instability of
the superposed fluids. In fig. 3, we have given the variation of the growth rate against the wave
number for the values of surface tension 7=4.0, 8.0, and 12.0. In these curves also the values of
the other parameters have been kept fixed. From fig. 3, we find that the surface tension has a sta-



108 Khan, A., Sharma, N., Bhatia, P. K.: Kelvin-Helmholtz Discontinuity in Two ...

Figure 1. Variation of growth rate n
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bilizing influence as the growth rate decreases with increasing surface tension for same values
of the wave number. Figure 4 depicts the variation of the growth rate with permeability of po-
rous medium. The curves in the fig. 4 clearly show that the growth rate decreases with increasing
value of O, the parameter characterizing effect of the permeability of porous medium. As the
growth rate decreases on increasing the values of Q for same wave number £, the effect of per-
meability is stabilizing on the growth rate of the unstable configuration. Figures 5 and 6 give the
plot of growth rate against the wave number for the values of viscosities X, = 4.0, 8.0, 12.0, and
X,=15.0,7.0,9.0. From figs. 5 and 6, we find that the growth rate decreases on increasing the
values of X| and X, for same wave number k. The effect of viscosity is thus stabilizing on the un-
stable mode of disturbance.
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Figure 4. Variation of growth rate n
against wave number & for
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We may, thus, conclude that surface tension, permeability of porous medium and viscosity
have stabilizing influence while streaming velocity has destabilizing influence on the system.
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