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Fluid flow in curved channels with various cross-sections, as a common
problem in theoretical and applied fluid mechanics, is a very complex and
quite undiscovered phenomenon. Defining the optimum shape of the fluid
flow boundaries, which would ensure minimum undesirable phenomena,
like “dead water* zones, unsteady fluid flow, etc., is one of the crucial hy-
draulic engineering’s task. Method of kinetic balance is described and used
for this purpose, what is illustrated with few examples.
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Introduction

Determination of the optimal hydraulic boundary which results in stable fluid
flow without separation and transient phenomena is often solved with the help of numer-
ous experiments, sometimes followed by unsuccessful trials. Here is presented the
method of kinetic balance, which is the basis of the computational solving procedure for
this problem.

The inner fluid flow current is at hydraulic equilibrium, containing “sound
flow”, boundary layer, and maybe “dead water”, zones. The latter ones are zones of
slowly moving or fluid at rest, separated from the “sound flow” by the discontinuity sur-
face. They occur as the result of fluid separation, which happens, either due to the bound-
ary layer thickening or significant fluid inertia. Boundary layer suction is the solution for
the first reason, used in for example aecrodynamics, but the latter one cannot be avoided in
such a manner. Strscheletzky [1] named it “inertial separation”.

In the rotating fluid, that will occur in the problems discussed in this paper, close
to the rotation axis, is formed swirl core, which can be treated as “dead water”. It is sur-
rounded by the “sound flow” region, where the flow can be assumed homogeneous, fluid
ideal, and incompressible, which is neighbored by the boundary layer.

Fluid boundaries shaping problem, which will ensure stable fluid flow with the
lack or minimum presence of the undesirable phenomena, was studied by, fore men-
tioned, Strscheletzky [1, 2], who has developed the method of kinetic balance based on
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the Euler flow equation ideal, incompressible fluid. This is the theoretical approach to the
problem of the optimal flow field boundary shapes.

Presented method is confirmed in many problems, of which some are introduced
later on.

Theoretical background

Navier-Stokes equation for incompressible fluid states [3]:

E=F—lgradp+vAé (1)
Dt P

where ¢ and p are local velocity and pressure, respectively, F—volume forces, p —density,
and v — kinematic viscosity.

Introducing assumption for the volume forces to be conservative, i. e.
F = —gradU, momentum eq. (1) for elementary fluid mass (dn; = pd V), is transformed to:

];5 dV; + pgrad UdV; +gradpdV; —nAcdV; =0 )
t

0

The whole flow domain contains »n elementary volumes. The “sound flow” and
“dead water” zones are separated with the surfaces of zero, second or higher order of dis-
continuity. Virtual work of forces acting on the fluid in the volume V; at the moment ¢, for
the virtual displacement OT is:

JP%éde,- +JpgradU5de +Igradp5de,- —JnAéSdei =0 3)
t
Vi v, 7 7

Introducing assumption for ideal (non-viscous), incompressible fluid, for the
whole flow domain V, we get:

i=l\ p.

i

Y Jp%fodVi +f[gradU5del- +I.[gradp5dei -0 )

i

Since the integrals are additive and V' =)V, it follows from the last equa-
tion:

j p 2lstav, + j peradUSTdV, + j gradpstdV, =0 (5)
7D ) !

The last eq. (5), states the Lagrange’s principle of virtual work: Flow equilib-
rium in the volume V at the moment ¢, is achieved when the sum of virtual works of the
forces, acting on the fluid, equals zero.
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Introducing the kinetic dE, = ¢’p/2 dV; and potential dE, = Udm + pdV energy,
it follows from eq. (5), that:

faj(dEk—dEp)dzzo (6)
4oV

Equation (6) represents balance condition for the fluid in motion, which states
that non-viscous and incompressible fluid is in equilibrium if the difference between po-
tential and kinetic energy is at minimum. Knowing that the total energy of virtual moving
does not change, equilibrium condition (6) is expressed as the variation of the sum of
integrals of action /,, formed for the characteristic flow domain zones V;:

n n. %

§1=%61; =) 5[ p[cdsdV; =0 (7)
i=1 i=l g v

where € is the local flow velocity, V; — i-th fluid flow region, dV; — elementary volume

bounded by the inflow 4.; and outflow A, control surfaces (fig. 1), as well as by the given

boundaries; s; and s, — representative positions of the fluid particle at the moments #; and

1), respectively, with ds =¢dr.

Equation (7), is more convenient statement of the equilibrium condition for the
fluid in motion, for the purpose of defining optimum fluid flow boundaries, than eq. (6).
This results in fact that optimally defined geometry of fluid flow boundary differs from
other solutions, by having the minimum value of the action integral /.

Usually main the inner flow is consisted of one “sound flow” and one or many
closed secondary flow regions, separated from the main flow by the free boundaries,
which are vorticity dissipative layers in the real fluid, or discontinuity surfaces, of differ-
ent order, for the ideal fluid flow, that is model discussed here. Variational conditions can
be applied to the “sound flow” region, but action integral for the “dead water”, where
fluid is at rest or moves very slowly, equals zero. It follows from eq. (7) that:

52
81 =5[[pcdrds =0 (®)
sV
This equation has analytical solution only in special cases. For this reason nu-
merical, or previously grapho-analytical, method is used. It is well known that elliptic
partial differential equations describe equilibrium phenomena, the one is needed here.
Stream lines and the lines of the same potential are mutually normal and they form a
curvilinear grid. Considering this, the whole computational, fluid flow domain, between
two control surfaces, should be divided into finitely small volumes: AV (¢-7), Equation
(8) is then applied to these finite elements of the ¢g-th stream tube, where g<[1, m]. Each
of AV (4:P) is divided into p (pe[1, k]) elementary volumes. The action integral is approx-
imated as:

m  q=k
I=p> >e(q, p)AV@P) As@-p) 9)
g=1 p=l1
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where (g, p) is a local flow velocity corresponding to the mean streamline of the g-th
stream tube divided into k parts, As(¢:P)is the distance between the two respective
positions s ) and s 7 * D along the mean streamline of the g-th stream tube (fig. 1).

Figure 1. Stream and potential line
grid for action integral calculation

In practice, defining flow field boundaries reduces to the variation of one bound-
ary, while others save its position, as well as the control surface. The action integral is
computed for each case, and the one with minimum integral is adopted as the final solu-
tion.

Application of the kinetic balance method is illustrated in the next flow field
boundaries forming examples.

Application of the kinetic balance method
Forming inner curved contour of the diffuser with parallel lateral walls [1]

Diffuser model is shown in fig. 2a. Variation of the inner boundary form is de-
fined by the ratio 4/b, values defined with arithmetic progression in interval [0.7, 1.1],
with the step 0.1, as it is shown in fig. 2a. The other fluid flow boundaries are fixed. The
action integral is calculated, using the expression (9), for each geometry.

Values of dimensionless action integral //],, for variety of geometry is presented
in fig. 2b. Function ///;, has minimum for the value 4/b, =0.815, so this contour was found
to be the optimal. These theoretical results were confirmed by the conducted experi-
ments, presented in [1].
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Figure 2. Diffuser with parallel lateral walls
(a) geometry, (b) action integral values

Defining the aeration duct of the bottom outlets
of the Haditha dam in Iraq [4]

The geometrical form of the aeration duct is shown in fig. 3a. The only variable
boundary is the inner one, which forms and positions are defined by the value r/b,=1.57,
1.37, and 1.14. Computed values of dimensionless action integral ///; are shown in fig.
3b. Function //, has minimum value for the ratio »/b, = 1.37, which is denoted as the case
II in fig. 3b.

Determination of the intake structure lower contour of the
additional hydro-turbine plant on the spillway of the HPP “Djerdap I’ [4]

The kinetic balance method, presented in this paper, has been used for defining
optimal shape of the lower contour of the intake structure, with geometry defined in fig.
4a. Discussed geometry variations are denoted by numbers 4-10. Not only geometry
changes, but various head water levels: V63.0, V65.0, and V69.5 have been taken into
consideration. The computation results are shown in fig. 4b. The minimum values of
dimensionless action integral ///, for various head water levels are, as it is shown in fig.

4b, in interval (6, 8). These theoretically gained results, have been confirmed by experi-
ments.
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Figure 3. Aeration duct of the bottom outlets
(a) geometry definition, (b) action integral values
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Flow boundaries shaping under the inlet bell mouth of the
axial pump in pumping station “Gradistanski rit” [4]

After installing larger capacity axial pumps in the pumping station
“Gradistanski rit”, for the existing suction level in the sump, some undesired phenomena
occurred. In order to prevent rotational flow, establish uniform velocity field at suction
pipe mouth and prevent air entraining vortices, sump geometry has been analyzed. It was
necessary, besides some other manipulations, to form the fluid region below the larger
bell mouth diameter. Shape of axis-symmetrical fluid flow domain between the suction

bell and the guide cone is shown in the fig. Sa.
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Figure 5. The flow passage
(a) geometry, (b) action integral
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Like in all the previous examples one boundary is changeable, the other remain
unchanged. In this case inner concave boundary of suction cone was varied, while the
shape of the bell was already defined and kept constant.

Dimensionless action integrals //1, have been computed for the three shapes of
suction bell contour, defined with the ratio: R/h, =2.42,1.91, and 1.64, which is denoted
in the fig. 5 as A, B, and C, respectively. Computation results are shown in fig. 5b. It was
found, and in this diagram obvious, that the function ///; has its minimum for the ratio
R/h,=1.91, corresponding to the curve B.

The suction cone was built in the shape of the curve B. No fore mentioned prob-
lems appeared, so once again, successful use of the kinetic balance method was con-
firmed in reality.

Defining the optimal shape of the Banki turbine,
cross-flow turbine, semi-spiral case [5]

Shaping optimal Banki turbine semi-spiral case has been done by using the
method of kinetic equilibrium. Impeller, semi-spiral case (intake chamber) and wicket
gate are main parts of the Banki turbine fluid flow geometry. Semi-spiral case directs wa-
ter to the impeller under defined angle, with as much as possible lower energy losses.
Turbine inflow is regulated by the wicket gate blade. This is working principle of this,
like other action turbines, where water kinetic energy is used.

The most convenient construction of the wicket gate, from hydraulic point of
view, is the hydraulically shaped blade, built in as console, rounded at the end.

Fluid flow boundaries, i. e. water passage geometry, of the Banki turbine is
given in fig. 6, preceded by the tab. 1, where radii for three various constructions, denoted
with i, are given. Value of the clasping angle of the semi-spiral case is here 90°, though it
may have various values.

Integral of action has been calculated for each possible geometry of the intake
chamber.

Table 1. Geometry parameters (curvature radii) for turbine semi-spiral case definition

; R, R, Ry Ry Rs Rq R,
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
I 2537 2353 227,0 216,1 2025 185,7 1676
I 2537 2353 2183 202,5 1879 1743 161,7
11 2537 2273 2059 190,5 175,5 164,1 157,7
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Figure 6. Various constructions of the Figure 7. Action integral values for various
Banki turbine intake chamber constructions of the semi-spiral case

Relative values of action integral in the function of contour radius r* at angle
o, =30° are presented in fig. 7. Dimensionless action integral ///, has a minimum value
equals 1, for the construction II. It comes out, according to the condition for fluid flow
stability, that construction II has optimal shape of the intake chamber.

Conclusions

Presented results introduce method of kinetic balance as a reliable, helpful tool
for defining optimum shape of the fluid flow boundaries. This analytic approach, with the
help of numerical methods, leads to the most appropriate geometry, what is confirmed
with numerous experiments conducted with fluid flow boundaries constructed according
to the numerically obtained shapes. Consequently, number of various constructions
which should be tested experimentally decreases in a great percentage by the application
of this method. The influence of viscosity, which is neglected in this study, should be
checked experimentally for the final definition of the fluid flow boundaries. The method
is simple, and since equilibrium is defined with elliptic equations, potential flow solution
is probably the easiest to use. This method could be used in a variety of problems, not just
like examples described in this paper, but also, for example flow passage forming and de-
termination of vortex core radius [6].
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Nomenclature

¢ — equipotential line
v — stream line
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