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A direct numerical simulation of a turbulent channel flow,with regularly
spaced two-dimensional roughness elements mounted at the wall and per-
pendicular to the flow direction, was performed at a very low Reynolds
number of Re = 940 based on the centerline velocity and the full channel
height.Using the lattice Boltzmann numerical algorithm, all essential scales
were resolved with about 19-10° grid points (1155 x 129 x128 in the x,, x5,
and x; directions). The computed results confirm the existence of turbu-
lence at such a low Reynolds number. Turbulence persisted over the entire
computation time, which was sufficiently long to prove its self~-maintenance.
By examination of statistical features of the flow across the anisotropy-in-
variant map, it was found that these coincide with conclusions emerging
from the analysis of transition and breakdown to turbulence in a laminar
boundary layer exposed to small, statistically stationary, neutrally stable
axisymmetric disturbances with the streamwise intensity component (u})
lower than the intensities in the normal (u ) and spanwise directions, (u3),
uy <uy =uj. To further support the concept and the results of theoretical
considerations of the laminar to turbulent transition process in wall-
-bounded flows using statistical techniques and to demonstrate its great po-
tential for engineering, an additional simulation was performed of a plane
channel flow with regularly spaced riblet elements mounted at the wall and
aligned parallel with the flow direction. The supplementary simulation was
done at a Reynolds number of Re = 6584 using about 250-10° grid points
(4096 x 257 x 240). Analysis of the simulation results carried out across the
flow region located in the midplane between the riblet elements confirms the
central result which lies in the root of the statistical dynamics of the velocity
Sfluctuations in wall-bounded flows: when the velocity fluctuations close to
the wall tend towards the one-component state, so that the streamwise in-
tensity component is much larger than the intensities in the normal and
spanwise directions, uy > u5 = u}, the turbulent dissipation rate vanishes at
the wall, leading to a significant reduction of the wall shear stress. For the
simulated flow case the local value of wall shear stress reduction was found
to exceed the wall shear stress reduction SR = 92% which corresponds to a
fully developed laminar channel flow with smooth walls at the same
Reynolds number.
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Introduction

Owing to the very rapid developments in computer technology in the past 20
years, it has become convenient to study turbulent shear flows at low Reynolds numbers
by applying numerical techniques. Early work by Deardorff[1] and subsequent contribu-
tions of Orszag and Paterson [2], Schumann [3], and Rogallo [4] established basic numer-
ical techniques and computational algorithms for later advanced studies by Kim ez al. [5],
Spalart [6, 7], Gilbert and Kleiser [8], Lyons et al. [9], Antonia ef al. [10], Kuroda et al.
[11], Eggels et al. [12], Choi et al. [13], Le and Moin [14], Rogers and Moser [15], and
Moser et al. [16]. In recent years, it has been obvious that the application of sophisticated
numerical algorithms is the only practical way to obtain complete information about
flows which is required for understanding the mechanisms that are responsible for the
turbulent transport processes. Since numerical simulations of turbulent flows provide full
three-dimensional time-dependent velocity and pressure fields, it is expected that these
will play the central role in the validation of ideas and concepts that are used in contem-
porary turbulence research.

Following the early ideas of Reynolds [17] and Taylor [18], who were the
founders of statistical fluid mechanics and established basic analytical tools, the statisti-
cal theory of transition and breakdown to fully developed turbulence in simple, nearly
parallel wall-bounded flows can be worked out proceeding from the basic equations that
govern the apparent stresses and by using the closure approximations based on the appli-
cation of the two-point correlation technique and invariant theory [19, 20]. Conclusions
emerging from the theory can be tested by direct comparisons with numerical simulations
and experiments. The mechanism responsible for breakdown to turbulence can be identi-
fied with a minimum amount of rational input. However, its description might not be di-
gestible for those who reason about transition in a deterministic fashion and exclusively
in the physical space where observations usually take place: exposition and use of argu-
ments and resulting deductions may therefore seem shallow, unreasonable, confusing or
entirely wrong. If the matter is analyzed in the functional space formed by two scalar
invariants which emphasize the anisotropy in the disturbances, the transition problem
turns out to be the first one to attack because of its simplicity and specific and unconven-
tional use of arguments then and only then appear logical and transparent. Knowing the
mechanism responsible for transition and breakdown to turbulence in advance it was pos-
sible to suggest and realize a limited number of fundamental simulations with the aim of
examining in detail and provide a deep understanding only of those essential features of
the transition process that are, in our opinion, of crucial importance for engineering.

The origin of turbulence in wall-bounded flows can be analyzed by looking into
the evolution of anisotropy in the Reynolds stresses. The level of the anisotropy of turbu-
lence can be quantified, following ideas of Lumley and Newman [21], using the aniso-
tropy tensor defined as a; =u;u; / g? -/ 3)6; (where q? =u,u,) and its scalar
invariants I, = a;a; and I, = a;q, kak, A plot of II versus 111, for axisymmetric turbu-
lence, 11, = (3/2) (4/3)| I, r]z/z and two- -component turbulence I, = (2/9) + 2111, de-
fines the anisotropy-invariant map shown in fig. 1, which accordmg to Lumley [22]
bounds all physically realizable turbulence. The two curves in this figure represent
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axisymmetric turbulence. The right curve corresponds to turbulence with the streamwise
intensity component larger than in the other two directions, u; > uy = u5 (III,>0), and the
left curve corresponds to axisymmetric turbulence with u; < uj = u) (111, <0). Along the
straight line resides two-component turbulence. The limiting states of turbulence are lo-
cated at the corner points on the right- and left-hand sides of the anisotropy-invariant map
and correspond to one-component turbulence and isotropic two-component turbulence,
respectively.

Figure 1 shows the influence of Reynolds number on the anisotropy of turbu-
lence for a channel flow deduced from the databases of direct numerical simulations at
low Reynolds numbers. There is a noticeable trend in these data that can be clearly distin-
guished. With decreasing Reynolds number towards a critical value valid for transition
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Figure 1. Anisotropy-invariant mapping of turbulence in a plane channel flow at low
Reynolds numbers

Data show the trend, as Re — Re,;, towards the theoretical solution valid for small, neutrally
stable, statistically stationary, axisymmetric disturbances. These disturbances, which are marked
with shading, are located at the right boundary of the map. The unstable disturbances, which
promote turbulence at very low Reynolds numbers, are located at the left boundary of the map.
Note that the trajectory corresponding to the stable disturbances does not coincide with any of
well-known solutions emerging from the deterministic theory of the hydrodynamic stability, based
on the Orr-Sommerfeld or similar equations, and implies that solutions of these equations can be
considered more as an exception than the rule and therefore are expected to be applicable in
unusual circumstances
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and breakdown to turbulence, the anisotropy increases. Away from the near-wall region,
there is tendency for the data to shift towards the right boundary of the anisotropy-invari-
ant map, which corresponds to axisymmetric turbulence (III, > 0). Data that correspond
to the region of viscous sublayer and lie along the two-component limit tend towards the
one-component turbulence.

The extrapolated trajectory of stable disturbances Re — Re_;, lies remarkably
close to the result of theoretical considerations of the transition process in a laminar
boundary layer exposed to small, neutrally stable, statistically stationary, axisymmetric
disturbances whose statistical properties are invariant to rotation about the flow direction
[23, 24].This particular type of invariance is consistent with the statistical dynamics of
the disturbances far away from the near-wall region, which show that u| > 1} = u5 [19].
Theoretical considerations, based on the transport equations for the statistical properties
of such disturbances, also show that a laminar regime in the boundary layer will persist up
to very high Reynolds numbers. In a recent study on the flow development around the air-
foil at moderate angle of attack, Jovi¢i¢ and Breuer [25] were able to animate visually all
phases of the transition process from the laminar to a fully developed turbulent state and
to show that these coincide with the theoretical predictions shown in fig. 1.

The theoretical analysis of the laminar-turbulent transition process can be ex-
tended towards axisymmetric disturbances which lie at the left boundary of the aniso-
tropy-invariant map, III, <0 (see fig. 1). Analysis of the transport equations for such dis-
turbances leads to the conclusion that these are always unstable and promote very rapid
transition and breakdown to turbulence in a laminar boundary layer. These disturbances,
however, cannot satisfy the statistical dynamics, which require u; > u5 = u} and therefore
are unlikely to appear in the boundary layer at very low Reynolds numbers. In the Appen-
dix we provide a brief review of the theoretical analysis of transition and breakdown to
turbulence induced by small axisymmetric disturbances developing in a laminar bound-
ary layer.

The first objective of this work was to examine numerically circumstances
which lead to the production and self-maintenance of turbulence at very low Reynolds
numbers. In a two-dimensional, plane channel with smooth walls, theoretical consider-
ations, experiments and numerical simulations show that turbulence cannot persist below
a certain Reynolds number of about Re = 2200 based on full channel height and the cen-
terline velocity.

The authors decided to initiate a numerical program, using a state-of-the-art lat-
tice Boltzmann numerical technique, in order to produce turbulence at very low Reynolds
numbers. This was accomplished by placing regularly spaced, two-dimensional rough-
ness elements at the wall in a such way that they are perpendicular to the flow in a plane
channel. Such a flow configuration forces turbulence, in the near-wall region, to restruc-
ture in a way suggested by theoretical considerations, (II1,),,,; <0, in order to promote its
generation and self-maintenance at very low Reynolds number.

The second objective was to confirm numerically the central result and the idea
of the theoretical investigations of Jovanovi¢ and Hillerbrand [26], who examined con-
straints which led to complete suppression of the velocity fluctuations near the wall. They
showed analytically, using only kinematic constraints, that the effective way to damp

36



Lammers, P., Jovanovi¢, J., Durst, F.: Numerical Experiments on Wall Turbulence ...

fluctuations in the near-wall region is to force them to be predominantly one-component
(see fig. 1).

For this very special state of wall turbulence, it can be proven analytically and
confirmed numerically, using the databases from direct numerical simulations, that the
turbulent dissipation rate vanishes at the wall. Under such circumstances, the total energy
dissipation rate, which is the rate of conversion of the mechanical energy of flow into
heat and which can be evaluated from the work done against the wall shear stress per unit
mass of the working fluid, reaches a minimum and a large reduction of the wall shear
stress must occur as a logical consequence. The outcome of this work forms a valuable
basis for rational flow and turbulence control with the aim of preventing laminar to tur-
bulent transition from occurring in the boundary layer at very high Reynolds numbers or
of'achieving a large drag reduction effect in a fully developed turbulent flow. The results
outlined above served as the starting point for identification and successful parameteri-
zation of the mechanism responsible for turbulent drag reduction by dilute addition of
high polymers by Jovanovi¢ et al. [27].

In order to produce the desired componentality of the velocity fluctuations lead-
ing to the realization of one-component turbulence in the near-wall region, (IL,),,,; = 2/3,
the authors performed additional simulation of a plane channel flow with regularly
spaced riblet elements mounted at the wall and aligned parallel to the flow direction. For
appropriate dimensions of the riblet elements and spacing between them, turbulence in
the midplane between the neighboring elements is forced to tend towards the one-compo-
nent state at the wall. By evaluating the turbulence statistics corresponding only to the
plane midway between the riblet elements, it was possible to confirm the results of ana-
lytical considerations and to show that, for the state of wall turbulence mentioned above,
the turbulent dissipation rate vanishes at the wall, leading to a large reduction of the wall
shear stress.

Computational domain

The simulated flow configuration and the employed coordinate system are
shown in fig. 2.

For wall-bounded flows, the characteristic scales are defined using the parame-
ters that are available at the wall such as the fluid density p, kinematic viscosity of the
flow medium v and shear stress at the wall 7,. From these parameters emerges the veloc-
ity scale u,:

u, = |- (1)

which is related to the streamwise pressure gradient oP/o x; through the mean momen-

tum equations by:
u, = éa_P (2)
\ p Ox,
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Figure 2. Computational domain of a plane channel flow and coordinate system
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where 0 is the channel half-width. In terms of the parameters mentioned above, the length
scale is defined as /. = v/u,. Following common practice, all variables are normalized using
these inner scales and this is identified in the text by the superscript +, e. g. x* = xu,/v.

There are two possibilities for performing numerical simulations of a turbulent
channel flow: either to fix the flow rate through the channel or to prescribe the axial pres-
sure gradient and therefore u,. For our simulations, we chose the latter option and thereby
the Reynolds number Re_, based on i, calculated from eq. (2) and the channel half-width,
was fixed, for the flow simulation described below, to the value:

Re,=%=5+;50 3)
v

In order to simulate the required condition III, < 0 for the anisotropy of velocity
fluctuations close to the wall, which ensures the appearance of turbulence at very low
Reynolds numbers, 15 regularly spaced two-dimensional roughness elements were
placed at the channel walls and perpendicular to the flow direction. A schematic diagram
of the simulated arrangement is shown in fig. 3.

The roughness elements were equally separated by a distance d* = 60 and placed
symmetrically, D* =0, on both sides of the channel. The non-dimensional height and the
width of the roughness elements were 2" = 15 and w" = 0.78, respectively. For these con-
ditions, the blockage ratio was 30% (defined as the ratio of the area occupied by the
roughness element to the cross-sectional area of the channel).

For the geometry shown in fig. 3, the flow is homogeneous in the spanwise di-
rection and quasi-homogeneous in the streamwise direction if the number of roughness
elements is sufficiently large. Considering that N = 15 satisfies the latter requirement, pe-
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Figure 3. Configuration of the roughness elements mounted at the walls of a plane channel
The elements are extended in the spanwise direction x; (see fig. 2). Only part of the computational
domain is shown

riodic boundary conditions were used in these directions. Using 1155 x 129 x 128 equi-
distant Cartesian grids in the x,, x,, and x; directions, the non-dimensional grid spacing
was Ax " =0.78.

The adequacy of the spatial resolution of a simulation performed for a configu-
ration with roughness elements is illustrated in fig. 4. These results confirm that the grid
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i, X1=28.79
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2

Figure 4. Distribution of the grid (Ax;") spacing and the local (%) and average (177,)
Kolmogorov length scale for the channel configuration shown in fig. 3
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resolution was sufficiently fine to resolve all essential turbulence scales. The estimated
value of the Kolmogorov length scale 1 = (v3/g,)"* obtained from the average dissipation
rate across the channel per unit mass of the working fluid wasnj;, =2.5[see Appendix, eq.
(23)].

To numerically produce the flow situation leading to realization of one-compo-
nent turbulence close to the wall, N = 30 regularly spaced riblet elements were placed at
the channel walls and parallel to the flow direction. Figure 5 shows a schematic represen-
tation of the flow field for which simulation was performed for the prescribed value of the
Reynolds number:

Sit
Re, =T =5+ =180 @)
1%

T

The riblet elements were equally separated in the spanwise direction by a dis-
tance d"= 10 and placed symmetrically on both sides of the channel D* = 0. The non-di-
mensional height and the width of the riblet elements were 4" = 10 and w* = 1.4, respec-
tively.

.
Xz, % —

Xa, X3

il ( .

Figure 5. Configuration of a plane channel with riblet elements mounted at the walls
The elements are extended in the streamwise direction x; (see fig. 2). Only a small section of the
computational domain is displayed

For the geometry shown in fig. 5, simulations were performed by imposing peri-
odic boundary conditions along the streamwise and spanwise directions using 4096 x 257 x
x 240 equidistant grid points (in the x,, x,, and x; directions), which corresponds to a
non-dimensional grid spacing of Ax " = 1.4. Figure 6 illustrates the adequacy of the spatial
resolution which guarantees that all scales are fully resolved within the computation do-
main.
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Figure 6. Distribution of the grid spacing (Ax;) and the local (7*) and average (17.,)
Kolmogorov length scale for the channel configuration shown in fig. 5

Numerical method

The choice of the numerical method was motivated by the demand for an algo-
rithm with small computing costs per grid point and time step. Owing to the complicated
geometry, the lattice Boltzmann method (LBM) was a logical and attractive choice and
will be briefly described. Further details about the history and theory of this computa-
tional technique can be found in review articles by Benzi et al. [28] and Chen and Doolen
[29] or in the books by Wolf-Gladrow [30] and Succi [31].

The LBM method was developed during the last 10 years as an alternative ap-
proach to existing methods of computational fluid dynamics (CFD). The method utilizes
the fact that information on the velocity U and the pressure p of a viscous fluid can be ob-
tained by solving a kinetic equation for a one-particle distribution function finstead of
Navier-Stokes equations directly. The function 7 = 7' (€, p, 7) depends on the molecular
velocity &, the position in space 7 and the time 7. The hydrodynamic quantities are ob-
tained from the moments of the distribution function.

A very popular kinetic model is described by the Boltzmann equation together
with the so-called Bhatnagar-Gross-Krook (BGK) ansatz [32] for the collision operator:
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where ¥ is the external force. The function f° corresponds to the equilibrium
(Maxwell-Boltzmann) distribution and 2 is a relaxation time. This equation is discretized
in time and space. Additionally, a finite set of velocities ¢, for & has to be defined. As a
result of discretization, the following non-dimensional equation is obtained:

2—-w

¢ g (6)

1

f,X+¢,t+D)—f,(xX,1) =—a{f,. (X, 1) -t (p,U +2i,x, t)} +3t),
yo)

where f; is the distribution function of the velocity ¢;. A detailed derivation of how the
lattice Boltzmann equation recovers the Navier-Stokes equation can be found in [33] and
especially for eq. (6) in [34].

Equation (6) appears to be a first-order scheme but is in fact second order in time
[35]. Without loss of generality we may choose 6t =1 for the time step and p = 1 for the
density. The force density & is given by the pressure gradient according to & =Vp,
whereby ¢, is the only remaining component in our case. The macroscopic behavior of
eq. (6) is obtained by a Chapman-Enskog procedure [36] together with a Taylor expan-
sion of the Maxwell-Boltzmann equilibrium distribution for small velocity (small Mach
number). For this equilibrium distribution:

) U, UUg|c¢i¢
£ = pp[1+ cz" +—2 ﬁ[ - —5aﬁ]] (7)

2
s ch Cs

it can be shown that the Mach number must be [u/c| < 1 in order to satisfy the incompressible
Navier-Stokes equations. The parameters #, and p = E,C“ : depend on the discretization of the
molecular velocity space. Various models can be found in [37]. For the present simulation a
three-dimensional model with 19 velocities ¢;, i = 0, ..., 18 (D3Q19) was employed. The
D3Q19 model has the parameters #,=1/3, #; = 1/18, and ¢, = 1/36. A sketch of ¢; is given in
fig. 7. From the Chapman-Enskog procedure the expression for the viscosity v in terms of the
relaxation parameter  follows as v = (1/6)[(2/w) —1].

The most commonly used condition to implement solid walls in the LBM is the
so called bounce-back rule. This rule forces the populations leaving the computational
domain to return to the node of departure with the opposite velocity. This rule is very sim-
ple and enforces mass conservation. Here it is implemented in such a way that the solid
boundaries are placed half way between two nodes. This is referred to in the literature as
a bounce-back on the link (BBL). It has been shown that the BBL scheme gives second-
-order accurate results for plane boundaries [38]. In combination with he marker-and-cell
approach, even geometries much more complex than plane walls can be matched to the
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Figure 8. Comparison of a lattice Boltzmann and a pseudo-spectral simulation of Kim ez al.
[S] for a plane channel flow at Re, = 180. Non-dimensionalized profiles of: (a) mean velocity,
(b) rootmean-square velocity fluctuations, (c¢) turbulent shear stress uju,, and (d) the
balance of the k equation all scaled on the inner variables
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wall-bounded turbulent flows. It is worth noting that the results displayed in figs. 8 and 9
were obtained with a grid size of 4096 x 257 x 256, resulting in a resolution Ax" =14
This resolution is nearly twice as coarse as that for the simulation performed for a channel
configuration with the roughness elements.

Usabs /U;

[ = e
00 51 104 152 202

Figure 9. Isosurface of instantaneous vorticity V x ﬁ|/ (u% /v) =0.4 scaled on the inner
variables for a plane channel flow at Re. = 180 (color image see on our web site)

For all simulations reported in this paper, an initial field was generated by a su-
perposition of the universal velocity distribution z;” and perturbation produced by a peri-
odic array of eddies according to:

0
. + _ )2 + _ c\2
o [(vf —x5)2 + (o —x¢)?]
Vo =ty + AT x{T —x] lexp ! — ! +
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+ _ ot
x2 le
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Although the exponential functions violate the incompressibility condition, they
serve to damp the amplitude of the eddies near the wall and avoid stability problems
during the initial phase of the simulation. In the present simulation, the constants in the
universal velocity distribution:

U,
Ur 1 %% o 9)

u, K 14

were chosen as k = 0.4 and C =5.2. The other parameters involved in eq. (8) were set to
A"=0.07, B"=0.14, and N, = 8. The initial velocity field corresponds to a finite array of
periodic spanwise eddies with centers along a line parallel to the x; axis and one
streamwise eddy centering in the middle of the x,-x; plane. The center of the first
spanwise eddy was located atx = 6 from the inflow boundary and the rest of the eddies
were separated at regular intervals of 25"

Results
Experiments with surface-mounted roughness elements

Starting from the initial field, governing equations were integrated until the flow
reached a statistically steady-state. This state could be identified by monitoring running
averages of the turbulence statistics very close to the wall and at the channel centerline.

Figure 10 shows that the relative turbulence intensity converges to about 40%
close to the wall and 10% at the channel centerline, which is consistent with the data mea-
sured by Fischer, Jovanovi¢ and Durst [40] in a fully developed turbulent channel flow at
low Reynolds numbers. When the statistically steady state had been reached, the equa-
tions were further integrated in order to prove self-maintenance of turbulence over a suf-
ficiently long interval of time and to increase the statistical sample for the evaluation of
various correlations of interest. Calculations of the plane channel flow with smooth walls

0.2 \\\
U1fU1 Bl i T ST ™
— x5=0.39
Figure 10. Relative turbulence in- . P e S
tensity at two monitoring locations
close to the wall and at the channel _g»
centerline as a function of normal-
ized time 7 = #/(6/u,) of integration.
These results confirm the persis- -04 /« N
tence and self-maintenance of tur-
bulence over more than 6000 e /.
integral time-scales of the flow :
500 550 600 . 650
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starting from identical initial and boundary conditions yielded a laminar flow field after
very few integration time steps.

Mean flow

After the simulations had reached a statistically steady-state, the mean flow
properties were calculated by averaging instantaneous flow fields over time and also over
the vertical planes along the gap between two neighboring roughness elements. For large
numbers of symmetrically arranged and regularly spaced roughness elements, such aver-
aging is permitted since the mean flow is expected to be symmetrical and quasi-periodic
in the streamwise direction. This specific type of time and space averaging allowed a con-
siderable increase in the sample for the determination of turbulence statistics.

The profiles of the mean veloc-
0 ity in flow direction for three
. ’ | s cross-sections between the rough-
Yl e / ness elements are shown in fig. 11.
— i — = X,=2879 / These data are non-dimensiona-
HH = exi= 4436 / lized by the wall friction velocity
. (71+ =U, /i, calculated from the
/ pressure gradient along the channel
/ using eq. (2) and plotted vs. the nor-
malized distance from the wall
x; =x,u/v. The self-similarity of
these profiles in inner scaling im-
= === plies that the flow is dominated en-
i 10 % tirely by the condition at the wall.
The flow in the near-wall region is
Figure 11. Normalized mean velocity profiles in the  very weak and shows clear signs of
flow direction reversal. The reversed flow occu-
pies the entire gap between the two
roughness elements. The data in fig.

11 show that the computed results correspond to a Reynolds number of:

26U,
c =ty
14

N
A

Re

~940 (10)

based on the full channel height (25) and the mean centerline velocity (U ).

Turbulence statistics

The profiles of all three turbulence intensity components uj = (u?)"2,i=1,2,3,
normalized with %, are shown in fig. 12. The collapse of these profiles is not as good as
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Figure 12. Non-dimensionalized root-mean-

-square velocity fluctuations versus the
normalized distance from the wall:

(a) xz =13.23; (b)x] =28.79 0
(c) xj =44.36 (c)

for the mean flow, shown in fig. 11, but the displayed data show that the fluctuating ve-
locity components are reasonably correlated with #_ across the entire flow field. The gen-
eral shape of these profiles differs considerably from those of the smooth channel shown
in fig. 8. The maximum of turbulent intensity is shifted away from the near-wall region
and the intensities of normal and spanwise velocity components are lower than for turbu-
lence developing along the smooth boundaries.

In close proximity to the wall, turbulence undergoes considerable modification
owing to the presence of the surface roughness. Roughness elements partially inhibit mo-
tions in the streamwise direction, which result in comparable growth of the streamwise
and the lateral 5 intensity components. Since the presence of the solid boundary sup-
presses heavily motions in the direction normal to the wall (#5 =0), fluctuations are
forced to restructure from the stable state located at the one-component limit towards the
unstable state which is around the isotropic two-component limit (see fig. 1).

Figure 13 shows traces of the joint variations of the invariants I, and III,, of a;
across the anisotropy-invariant map. This figure indicates that roughness elements force
the anisotropy very close to the wall to decrease. As a consequence, the invariants, which
lie along the two-component state, shift towards the left corner of the anisotropy map,
which corresponds to the isotropic two-component turbulence.
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Figure 13. Development of turbulence across the aniso-
tropy-invariant map

The trend in the simulation data near the wall indicates a tendency
towards the isotropic two-component limit
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Figure 14. Turbulent shear stresses u7u, and u u3 non-dimen-
sionalized with # vs. the normalized distance from the wall

The turbulent shear stress profiles normalized in inner scaling are shown in fig.
14. Owing to the broken homogeneity in the streamwise direction due to the presence of
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the roughness elements, apart from u;u,, additional shear stress uu; exists which is,
however, very small. The computed profiles of u;u, reveal that it is negligible across the
entire region separated between the roughness elements. In the region above the rough-
ness elements %, 1, shows a linear rise up to the channel centerline. This behavior of uu,
is similar to the shear stress development in a channel flow with smooth walls, shown in
fig. 8, with the difference, however, that the overall level is much lower.

The balance of the equation which governs the turbulent kinetic energy:

7 U, —au 2
%JrUkﬁ:_m U _,.0U; 0u _ 1 duguu, 1 Opuy L, 0% (a0
ot ox;, 0x;, Ox, Ox;, 2 Ox; p 0Ox, ox, 0x,,

%/_/
Dk/Dt Pk & Tk Hk Dk

is shown in fig. 15. All terms which contribute to the balance of the k& equation,
convection DA/Dt, production Py, turbulent transport 7}, pressure transport [1;, viscous
dissipation €, and the viscous diffusion Dy, are scaled with inner variables. The computed

o——o —, t = y
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Figure 15. Terms conributing to the balance of the energy &
equation normalized by 17? /v

data show that the production and the viscous dissipation processes are dominant in the
balance of k. These two processes are, however, out of equilibrium across the entire flow
field. In the region between the roughness elements, only the dissipation process is active
and is balanced by the viscous diffusion. In the outer flow, above the roughness elements,
the production process is dominant in the budget of the k& equation and is balanced
partially by the dissipation and to a larger extent by other processes of transport nature.
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Figure 16. Isosurface of vorticity W x U |/ (17,2/ v) =0.4 for the configuration shown in fig. 3

and Re, =50, 7 = 600 (color image see on our web site)

Figure 16 shows the isosurface of the instantaneous vorticity across the entire
flow domain scaled on the inner variables. This form of flow visualization illustrates
qualitative features of turbulence at very low Reynolds number: formation of relatively
large, quasi-periodic, weakly disordered structures elongated in the streamwise direction
with small spread of scales. This pattern differs from similar structural information
shown in fig. 9 for a plane channel flow developing along smooth walls.

Experiments with surface-mounted riblet elements

In this section, we turn attention to the analysis of the simulation results carried
out for the channel flow with riblet elements. The analysis to be presented is restricted
only to the midplane between the elements where turbulence is forced to reach the
one-component limit at the wall. Examination of the statistical properties of such turbu-
lence provides the possibility not only of verifying the theoretical considerations of
Jovanovi¢ and Hillerbrand [26], but also of demonstrating that these considerations are
directly related to the chief mechanism of wall shear stress reduction in turbulent
wall-bounded flows.

Mean flow

Figure 17 shows mean velocity profiles in the channel with smooth and with
riblet walls normalized with wall friction velocities u, and #, calculated from the pressure
gradient along the channel using eq. (2). The data displayed in this figure show that the
computed results correspond to a Reynolds number of:
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Re, =29Yc L6584 (12)

c

v
based on the full channel height and the mean centerline velocity.

Since the Reynolds numbers and the pressure drops for simulated flows with and
without riblets are almost identical, we conclude from fig. 17, by taking into account the
threefold increase in the wetted surface area, that riblet elements greatly reduce the wall
shear stress 7,, and that the average wall shear stress reduction (SR) defined as:

T .
SR =1- (W)—rlblet (13)
Ty )smooth
is about SR ~ 66%.
20
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Figure 17. Normalized mean velocity pro-
files in a plane channel with smooth walls
and in the flow region located in a midplane
between the riblet elements

Figure 18. Normalized mean velocity gradi-
ents in a plane channel with smooth walls
and for the flow region located in a
midplane between the riblet elements

Profiles of the mean velocity gradients shown in fig. 18 reveal a dramatic reduc-
tion in the wall shear stress in the midplane between the riblet elements. The data pre-
sented in this figure suggest that the local value of SR:

(SR) g, =1-—

1S (SR)mia. = 92% and exceeds the value:

(SR)lam. =1-

idplang
(TW)I'rilblgta ‘ (14)

Tw ) smooth

( laminar

w7 smooth ( 1 5)

turbulent
W/ smooth

(SR)1am, = 85%, which corresponds to a fully developed laminar channel flow with
smooth walls at the same Reynolds number (see [13]).
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Turbulence statistics
Figure 19 provides a demon-
3 | | [ stration for modifications of tur-
Ui rms -, U X5=561 [ [ 1| bulence 'induced by the presence
25— fc‘\\ T dams ' | of the riblet elements. The data
o == Uan . -

%5 o Moserefal [1996] Lais presented correspond to the flow
< %ok region in the midplane between
- ouy o the riblet elements and are nor-
151 ! P om malized with the wall friction ve-

1 1 oheoooopsadags - RN locity calgulated from eq. (2).
i T s e T e s TP B The displayed profiles of the
o5 Ce1 A TRt AR Temeelecasads intensity components suggest that

e e .

e 1F - the principal mechanism of turbu-
. e lence modification is associated
0 = 100 % 150 with the ability of the riblets to de-

lay the growth of turbulence in the
Figure 19. Non-dimensionalized root-mean-square of reojon adjacent to the wall. Near
the velocity fluctuations vs. normalized distance from . -
the wall for the smooth channel and in the midplane be- the Wau the lateral intensity com-
ponent is suppressed by the riblets

tween the riblet elements
and forced to follow the trend of
the intensity component perpen-
dicular to the wall. Such behavior
of the turbulent stresses implies that these will assume a form as in axisymmetric turbu-
lence and tend towards the one-component limit at the wall. Away from the wall region,
turbulent intensities follow a similar pattern common for flows developing along smooth
boundaries.

For the channel configuration with the riblet elements, the simulated database
provided the opportunity to examine the evolution of turbulence across the aniso-
tropy-invariant map and confirm the theoretical deduction that an increase in anisotropy
near the wall is associated with a significant decrease in the wall shear stress. The results
of these considerations are illustrated in fig. 20. In the midplane between the riblet ele-
ments, anisotropy is greatly increased in the viscous sublayer in comparison to the corre-
sponding flow region of a fully developed channel flow (see fig. 20b). For the simulated
geometry and arrangement of the riblet elements, turbulence in the midplane between the
riblets reaches the one-component state at the wall. Simulation results show that the ani-
sotropy is only marginally altered at the tip of the riblets in comparison with the level
which the anisotropy attains in the viscous sublayer of a turbulent flow developing along
smooth boundaries (see fig. 20a). Away form the near-wall region, the evolution of ani-
sotropy follows similar trends in magnitude and character as in a fully developed plane
channel flow.

The discussed behavior of turbulence in the near-wall covered with riblets is reflected
in the distribution of the turbulent dissipation rate which is presented in fig. 21. Owing to
ability of riblets to significantly damp near-wall turbulence in the midplane between
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Figure 20. Anisotropy invariant mapping of turbulence in a channel flow with the riblet
elements: (a) above the riblet; (b) in the plane between the riblet elements

them, the turbulent dissipation rate vanishes at the wall instead of reaching its maximum
as in flows developing along smooth walls. Figure 21 also shows that the turbulent dissi-
pation rate above the riblets exceeds the value which corresponds to the flow over a
smooth surface. By taking into account the data displayed in fig. 20, it appears that an in-
crease in anisotropy results in a decrease in the dissipation rate and that a decrease in ani-
sotropy is associated with an increase in the dissipation rate at the wall. These are funda-
mental mechanisms of flow control which are relevant for the understanding of turbulent
drag reduction.
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Figure 21. Distributions of the turbulend dissipation rate ¢ vs.
distance from the wall normalized on inner variables in a
plane channel flow with smooth walls and in the midplane
between the riblet elements
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The budget of the energy equation presented in fig. 22 reveals that the riblets act to sup-
press turbulent activity very close to the wall and shift it towards the buffer region. The re-
duction of the turbulent dissipation rate near the wall is accompanied by a decrease in the
turbulent production P;, which both attain maximum values slightly further away from the
wall than in a flat channel. In contrast to flows developing along smooth boundaries in the
midplane between the riblets owing to &,,,; — 0 as x, — 0, the transport term 7}, and the vis-
cous diffusion D, term exhibit similar trends very close to the wall (see fig. 8).

Figure 23 shows the isosurface of the instantaneous vorticity field which visu-
ally illuminates a slight reduction in the scale separation between the large scales (L) and
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Figure 22. Terms contributing to the balance of the energy k
equation scaled on the inner variables for a smooth channel
and in the region between the riblet elements
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Figure 23. Isosurface of instantaneous vorticity V x U |/ (ﬂf/v) =0.4 scaled on the
inner variables for a plane channel flow with riblets shown in fig. 5 at Re, ~ 180
(color image see on our web site)
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the small scales (77) in the flow and laminarization of the layer very close to the wall due
to action of the riblet elements. In the close vicinity of the wall, turbulent activity is
greatly reduced in comparison with the corresponding region of the channel flow with
smooth walls shown in fig. 9.

Conclusions

A direct numerical simulation was performed of a plane channel flow, with the
two-dimensional roughness elements mounted at the walls and placed perpendicular to
the flow. Using the lattice Boltzmann numerical method, all scales were resolved in the
computational domain with 1155 x 129 x 129 grid points. The numerical results confirm
the persistence of turbulence at a Reynolds number of Re = 940, based on the centerline
velocity and full channel width.

The computed turbulence levels at the channel centerline and in close proximity
to the wall were found to be in agreement with typical values for a fully developed turbu-
lent channel flow. The collapse of the mean velocity profiles and the self-similarity of
turbulence statistics when scaled on inner variables demonstrate that the simulated flow
is controlled entirely by conditions at the wall. Examination of the energy balance sug-
gests that the flow is out of equilibrium and that the production of energy is larger than
the viscous dissipation. The computed instantaneous flow fields show the presence of
weakly disordered, quasi-periodic structures elongated in the flow direction.

Examination of the simulated data shows that the roughness elements signifi-
cantly suppress streamwise velocity fluctuations near the wall. Owing to the blockage ef-
fect of the roughness elements, the streamwise and the spanwise velocity fluctuations
grow at nearly the same rate close to wall. Such behavior of the velocity fluctuations pre-
vents large anisotropy from developing in the near-wall region, which is the essential fea-
ture of wall turbulence along smooth boundaries at low Reynolds numbers. Hence the
computed results confirm that the chief mechanism responsible for self-maintenance of
turbulence at very low Reynolds numbers is related to the reduction of the anisotropy in
the velocity fluctuations very close to the wall.

Using the same numerical algorithm, supplementary simulations were per-
formed of a plane channel flow with the riblet elements aligned parallel to the flow direc-
tion. Using 4096 x 257 x 240 equidistant grids, all scales were resolved within the com-
putation domain, permitting details to be obtained of the chief mechanism associated
with turbulence modification by riblets and their influence on the reduction of the wall
shear stress.

Numerical results show that riblets with ultra-thin fins and equal finheight to
finspacing of about 10 viscous length scales increase the anisotropy of turbulence close
to the wall. Anisotropy invariant-mapping of turbulence in the midplane between the
riblets revealed that turbulence attains the one-component state at the wall. For such a
limiting state of wall turbulence, numerical simulation confirmed that turbulence is
damped in close proximity of the wall by suppression of the lateral velocity fluctuations
which are constrained to follow the same trend as the fluctuations perpendicular to the
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wall. In addition the turbulent dissipation rate is forced to vanish at the solid surface and
significant reduction of the wall shear stress occur which overweight the reduction of the
wall shear stress if the flow assumed a laminar state. Hence the simulated results confirm
that the chief mechanism responsible for reduction of the wall shear stress is associated
with an increase in the anisotropy of turbulence in the region very close to the wall.
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Appendix

Transition and breakdown to turbulence induced by small
axisymmetric disturbances developing in a laminar, flat plate
boundary layer

Starting from the Navier-Stokes and continuity equations for a viscous incom-
pressible fluid:

%Jruk%__lﬁﬂ/ﬂ, O o k=123 (16)
ot 0x,, p Ox; 0x, Ox;,  Oxy

and introducing the conventional method of separating the instantaneous velocity u; and
the pressure p into the mean-laminar flow and the disturbances u; and p’ superimposed
on it:

u=U; +u;, p=P+p (17)
one obtains the equations for the disturbances:

%erk%jLu;c%:_la_ervﬂ’ O _g (18)
ot 0x;, 0x;, p Ox; Ox) Ox;  Ox;

In the derivation of the above equations, it is assumed that the disturbances are
much smaller than the corresponding quantities of the mean flow:
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u; <U;, p'<P (19)

and that they satisfy the Navier-Stokes and the continuity equations.

If we consider the disturbances to be random, then by systematic manipulation
of'eq. (18) it is possible to obtain transport equations for the “apparent” stresses (see, for
example [41]):

oulu’; oufuy,
J +Uk =
ot 0x,
___ou; ___0U; 1|7 5p or " oul 2
= —uhu B —utuj a—‘/——[u;a—ﬂt,ﬂa— _2‘,6”1 o +v8 uiuj (20)
Xk X P Xi ‘xj axk axk axkak
P !
i 171.]. &
- ij

In the above equations, one can identify two different types of unknown correla-
tions: the velocity-pressure gradient correlations (/7;) and the dissipation correlations
(¢)- These correlations must be expressed in terms of U; and ufu’; in order to close the re-
sultant eq. (20) for the apparent stresses.

To illuminate the statistical dynamics of the apparent stresses during the lami-
nar-turbulent transition process, we may utilize the closure proposals for ¢;; and /7 elabo-
rated in detail by Jovanovi¢ [19]. Using the two-point correlation technique and the in-
variant theory, he suggested the following approximations for the unknown terms in the
transport equations for the apparent stresses:

1 azu;ug- 4 1 1)
g =—v————+ Ag,a,; +-¢,
and v 4 5xk5xk / 3
Iy =a; Py +F (%Psﬁij - P )+small transport terms (22)

Here A4 and F are scalar functions that depend on the anisotropy invariants and
the Reynolds number based on the Taylor microscale, Re, =1¢q/v, and &, = 5vg*/A*is the
homogeneous part of the dissipation rate [19]:

2.2
RV (23)
4  0Ox;,0x;

The above closure proposals satisfy the two-component limit and therefore
realizability, coincide with the exact solutions available for vanishing anisotropy in the
disturbances, behave properly for low and large Reynolds numbers and reduce to an ap-
propriate tensorial form for the axisymmetric disturbances.

Using the suggested forms for;and 1, the transport equations for the apparent
stresses may be written in the closed form:
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ouru’ ouru’
L) +U, L)~

6t 8.xk

=P +a, P +F|LP 5 —P +-2A¢,a 26 +1vM (24)
=4 ijtss R y h”3h”26xk0xk

We may follow the same analytical path for the treatment of the transport equa-
tion for the homogeneous part of the dissipation rate ¢,. After lengthly derivations, which
were elaborated by Jovanovié [19], the following equation emerges in a closed form:

azé‘h

8xk axk

O¢n L1y O8n o _p g En ¥k OU: _ % (25)

k L
ot 8xk k 8xk 2
Here y is another scalar function which also depends on the anisotropy
invariants and the Reynolds number Re; .
Contraction of the transport equations for the apparent stresses, eq. (20), yields
the energy equation (k = ¢%/2) for the disturbances:
2
%-f- UkﬁEPk -&, +lvl (26)
ot Ox, 2 Ox; Oxy

If we consider transition of the flow in a flat plate boundary layer, then the en-
ergy equation immediately suggests stability towards small disturbances if the produc-
tion is balanced by the dissipation:

Piz¢g, (27)

The equilibrium constraint leads to the equation for the energy:

2
ok + U Ok lv Ok (28)
ot 0x, 2 Ox; Oxy

IR

which is of boundary layer character and does not allow amplification of statistically
stationary disturbances in the boundary layer [42].
Inserting the equilibrium constraint P, = ¢, into the dissipation rate equation:

Jgy, Jgy, 8,21 1 0d%g,

4 U, =24 -y) L +—yv—2

ot Fox, %()ﬂk 2 9x,0x, (29)
tO;l’]SllI'C
thatghzﬂ

and specifying that the dissipation rate is always positive, £, > 0, we deduce the transition
criterion in terms of the Reynolds number based on the intensity (¢%), the length scale (1)
and the anisotropy (II,, I11,) of the disturbances as follows:

24—y =0 (30)
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For a certain magnitude (I11,) and character (II1,) of the anisotropy in the distur-
bances, the derived transition criterion (30) suggests the permissible magnitudes for the
intensity and the length scale of disturbances Re; < (Re,),,;, that guarantee balance (27)
(P, =&, withe, > 0) and therefore maintenance of the laminar flow regime in a flat plate
boundary layer.

The transition criterion is determined from the requirement that the laminar
boundary layer should be neutrally stable to small, statistically stationary axisymmetric
disturbances, which is equivalent to the local (and therefore also global) equilibrium
discussed. As a consequence of this requirement, the energy k cannot grow in the
boundary layer above corresponding values of the free stream. However, this conclu-
sion does not hold for the scale A, which must follow increases in the shear layer thick-
ness (A ~ &) as it develops downstream. This behavior of g? and A implies that the dis-
sipation rate &, = 5vq?/A* will decrease with increasing Reynolds number until it
reaches some minimum value required by the dissipation rate equation to induce transi-
tion and breakdown to turbulence.

Using expressions for the scalar functions 4 and y constructed analytically by
Jovanovi¢, Otié, and Bradshaw [43]:

3
1+ 1_911151_2 gHa w-1, UI,>0
2 4
A= = 3: 31)
1+ 1—9lIIa+§ zHu w-1, 1I, <0
2 4\\3

3
1ol i, —2 21 ) [Lag—o04m), 1, >0
2 4\13
\ljz
1 302 Y 1 302 Y
22510, +2 || 210, | [+d1-9=1, -2 [ 211, (18 —04W), I, <0
2 4\ 3 2 4\ 3
(32)
with
7 = -00306 Re ; +0313,/0.009604 Re2 +10208 (33)

it is easy to prove from criterion (30) that for III, > 0, (I1,)w.n = 2/9, and (I1,) > 0.15 the
laminar regime in a flat plate boundary layer will remain up to infinite Reynolds
numbers. For 111, <0 and (II,,)y,; = 1/6 the transition criterion (30) cannot be satisfied for
any value of R, and therefore we expect that for such disturbances turbulence will appear
in the boundary layer at very low Reynolds numbers. These analytical results
corresponding to two different modes of the axisymmetric disturbances are displayed in
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fig. 1. This figure suggests that the most effective way to initiate and maintain turbulence
at very low Reynolds number is to reduce the anisotropy in the disturbances close to the
wall to a minimum by forcing these to tend towards the isotropic two-component limit at
the wall.
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