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A di rect nu mer i cal sim u la tion of a tur bu lent chan nel flow,with reg u larly
spaced two-di men sional rough ness el e ments mounted at the wall and per -
pen dic u lar to the flow di rec tion, was per formed at a very low Reynolds
num ber of Re @ 940 based on the cen ter line ve loc ity and the full chan nel
height.Us ing the lat tice Boltzmann nu mer i cal al go rithm, all es sen tial scales 
were re solved with about 19·106 grid points (1155 ´ 129 ´128 in the x1, x2 ,
and x3 di rec tions). The com puted re sults con firm  the ex is tence of tur bu -
lence at such a low Reynolds num ber. Tur bu lence per sisted over the en tire
com pu ta tion time, which was suf fi ciently long to prove its self-main te nance. 
By ex am i na tion of sta tis ti cal fea tures of the flow across the ani so tropy-in -
vari ant map, it was found that these co in cide with con clu sions emerg ing
from the anal y sis of tran si tion and break down to tur bu lence in a lam i nar
bound ary layer ex posed to small, sta tis ti cally sta tion ary, neu trally sta ble
axisymmetric dis tur bances with the streamwise in ten sity com po nent ( )¢u1
lower than the in ten si ties in the nor mal ( )¢u2  and spanwise di rec tions, ( ¢u3), 
¢ < ¢ = ¢u u u1 2 3 . To fur ther sup port the con cept and the re sults of the o ret i cal

con sid er ations of the lam i nar to tur bu lent tran si tion pro cess in wall-
-bounded flows us ing sta tis ti cal tech niques and to dem on strate its great po -
ten tial for en gi neer ing, an ad di tional sim u la tion was per formed of a plane
chan nel flow with reg u larly spaced riblet el e ments mounted at the wall and
aligned par al lel with the flow di rec tion. The sup ple men tary  sim u la tion was
done at a Reynolds num ber of Re 6584@  us ing about 250·106 grid points
(4096 ́  257 ́  240). Anal y sis of the sim u la tion re sults car ried out across the
flow re gion lo cated in the midplane be tween the riblet el e ments con firms the 
cen tral re sult which lies in the root of the sta tis ti cal dy nam ics of the ve loc ity
fluc tu a tions in wall-bounded flows: when the ve loc ity fluc tu a tions close to
the wall tend to wards the one-com po nent state, so that the streamwise in -
ten sity com po nent is much larger than the in ten si ties in the nor mal and
spanwise di rec tions, ¢ ¢ = ¢u u u1 2 3o , the tur bu lent dis si pa tion rate van ishes at 
the wall, lead ing to a sig nif i cant re duc tion of the wall shear stress. For the
sim u lated flow case the lo cal value of  wall shear stress re duc tion was found 
to ex ceed the wall shear stress re duc tion SR @ 92%  which cor re sponds to a
fully de vel oped lam i nar chan nel flow with smooth walls at the same
Reynolds num ber.
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Introduction

Ow ing to the very rapid de vel op ments in com puter tech nol ogy in the past 20
years, it has be come con ve nient to study tur bu lent shear flows at low Reynolds num bers
by ap ply ing nu mer i cal tech niques. Early work by Deardorff [1] and sub se quent contribu- 
tions of Orszag and Pat er son [2], Schumann [3], and Rogallo [4] es tab lished ba sic nu mer -
i cal tech niques and com pu ta tional al go rithms for later ad vanced stud ies by Kim et al. [5], 
Spalart [6, 7],  Gilbert and Kleiser [8], Ly ons et al. [9], Antonia et al. [10], Kuroda et al.
[11], Eggels et al. [12], Choi et al. [13], Le and Moin [14], Rog ers and Moser [15], and 
Moser et al. [16]. In re cent years, it has been ob vi ous that the ap pli ca tion of so phis ti cated
nu mer i cal al go rithms is the only prac ti cal way to ob tain com plete in for ma tion about
flows which is re quired for un der stand ing the mech a nisms that are re spon si ble for the
tur bu lent trans port pro cesses. Since nu mer i cal sim u la tions of tur bu lent flows pro vide full 
three-di men sional time-de pend ent ve loc ity and pres sure fields, it is ex pected that these
will play the cen tral role in the val i da tion of ideas and con cepts that are used in con tem -
po rary tur bu lence re search.

Fol low ing the early ideas of Reynolds [17] and Tay lor [18], who were the
found ers of sta tis ti cal fluid me chan ics and es tab lished ba sic an a lyt i cal tools, the sta tis ti -
cal the ory of tran si tion and break down to fully de vel oped tur bu lence in sim ple, nearly
par al lel wall-bounded flows can be worked out pro ceed ing from the ba sic equa tions that
gov ern the ap par ent stresses and by us ing the clo sure ap prox i ma tions based on the ap pli -
ca tion of the two-point cor re la tion tech nique and in vari ant the ory [19, 20]. Con clu sions
emerg ing from the the ory can be tested by di rect com par i sons with nu mer i cal sim u la tions 
and ex per i ments. The mech a nism re spon si ble for break down to tur bu lence can be iden ti -
fied with a min i mum amount of ra tio nal in put. How ever, its de scrip tion might not be di -
gest ible for those  who rea son about tran si tion in a de ter min is tic fash ion and ex clu sively
in the phys i cal space where ob ser va tions usu ally take place: ex po si tion and use of ar gu -
ments and re sult ing de duc tions may there fore seem shal low, un rea son able, con fus ing or
en tirely wrong. If the mat ter is an a lyzed in the func tional space formed by two sca lar
invariants which em pha size the ani so tropy in the dis tur bances, the tran si tion prob lem
turns out to be the first one to at tack be cause of its sim plic ity and spe cific and un con ven -
tional use of ar gu ments then and only then ap pear log i cal and trans par ent. Know ing the
mech a nism re spon si ble for tran si tion and break down to tur bu lence in ad vance it was pos -
si ble to sug gest and re al ize a lim ited num ber of fun da men tal sim u la tions with the aim of
ex am in ing in detail  and provide a deep understanding only of those essential features of
the transition process that are, in our opinion, of crucial  importance for engineering.

The or i gin of tur bu lence in wall-bounded flows can be an a lyzed  by look ing into
the evo lu tion of ani so tropy in the Reynolds stresses. The level of the ani so tropy of tur bu -
lence can be quan ti fied, fol low ing ideas of Lumley and Newman [21], us ing the ani so -
tropy ten sor de fined as a u u qij i j ij= -/ ( / )2 1 3 d  (where q u us s

2 = ) and its sca lar
invariants IIa = aijaji and IIIa = aijajkaki. A plot of IIa ver sus IIIa for axisymmetric tur bu -
lence, IIa = (3/2)[(4/3)êIIIa½]2/3, and two-com po nent tur bu lence, IIa = (2/9) + 2IIIa, de -
fines the ani so tropy-in vari ant map shown in fig. 1, which ac cord ing to Lumley [22]
bounds all phys i cally re al iz able tur bu lence. The two curves in this fig ure rep re sent
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axisymmetric tur bu lence. The right curve cor re sponds to tur bu lence with the streamwise
in ten sity com po nent larger than in the other two di rec tions, ¢ > ¢ = ¢u u u1 3 2 (IIIa > 0), and the 
left curve cor re sponds to axisymmetric tur bu lence with ¢ < ¢ = ¢u u u1 3 2 (IIIa < 0). Along the
straight line re sides two-com po nent tur bu lence. The lim it ing states of tur bu lence are lo -
cated at the cor ner points on the right- and left-hand sides of the ani so tropy-in vari ant map 
and cor re spond to one-com po nent tur bu lence and iso tro pic two-com po nent tur bu lence,
re spec tively.

Fig ure 1 shows the in flu ence of Reynolds num ber on the ani so tropy of tur bu -
lence for a chan nel flow de duced from the da ta bases of di rect nu mer i cal sim u la tions at
low Reynolds num bers. There is a no tice able trend in these data that can be clearly dis tin -
guished. With de creas ing Reynolds num ber to wards a crit i cal value valid for tran si tion
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Figure 1. Anisotropy-invariant mapping of turbulence in a plane channel flow at low
Reynolds numbers
Data show the trend, as Re ® Recrit, towards the theoretical solution valid for small, neutrally
stable, statistically stationary, axisymmetric disturbances. These disturbances, which are marked
with shading, are located at the right boundary of the map. The unstable disturbances, which
promote turbulence at very low Reynolds numbers, are located at the left boundary of the map.
Note that the trajectory corresponding to the stable disturbances does not coincide with any of
well-known solutions emerging from the deterministic theory of the hydrodynamic stability, based
on the Orr-Sommerfeld or similar equations, and implies that solutions of these equations can be
considered more as an exception than the rule and therefore are expected to be applicable in
unusual circumstances



and break down to tur bu lence, the ani so tropy in creases. Away from the near-wall re gion,
there is ten dency for the data to shift to wards the right bound ary of the ani so tropy-in vari -
ant map, which cor re sponds to axisymmetric tur bu lence (IIIa ³ 0). Data that cor re spond
to the re gion of vis cous sublayer and lie along the two-com po nent limit tend to wards the
one-com po nent tur bu lence.

The ex trap o lated tra jec tory of sta ble dis tur bances Re ® Recrit lies re mark ably
close to the re sult of the o ret i cal con sid er ations of the tran si tion pro cess in a lam i nar
bound ary layer ex posed to small, neu trally sta ble, sta tis ti cally sta tion ary, axisymmetric
dis tur bances whose sta tis ti cal prop er ties are in vari ant to ro ta tion about the flow di rec tion  
[23, 24].This par tic u lar type of invariance is con sis tent with the sta tis ti cal dy nam ics of
the dis tur bances far away from the near-wall re gion, which show that ¢ > ¢ @ ¢u u u1 3 2 [19].
The o ret i cal con sid er ations, based on the trans port equa tions for the sta tis ti cal prop er ties
of such dis tur bances, also show that a lam i nar re gime in the bound ary layer will per sist up 
to very high Reynolds num bers. In a re cent study on the flow de vel op ment around the air -
foil at mod er ate an gle of at tack, Jovi~i} and Breuer [25] were able to an i mate vi su ally all
phases of the tran si tion pro cess from the lam i nar to a fully de vel oped tur bu lent state and
to show that these co in cide with the the o ret i cal pre dic tions shown in fig. 1.

The the o ret i cal anal y sis of the lam i nar-tur bu lent tran si tion pro cess can be ex -
tended to wards axisymmetric dis tur bances which lie at the left bound ary of the ani so -
tropy-in vari ant map, IIIa £ 0 (see fig. 1). Anal y sis of the trans port equa tions for such dis -
tur bances leads to the con clu sion that these are al ways un sta ble and pro mote very rapid
tran si tion and break down to tur bu lence in a lam i nar bound ary layer. These dis tur bances,
how ever, can not sat isfy the sta tis ti cal dy nam ics, which re quire ¢ > ¢ @ ¢u u u1 3 2 and there fore 
are un likely to ap pear in the bound ary layer at very low Reynolds num bers. In the Ap pen -
dix we pro vide a brief re view of the the o ret i cal anal y sis of tran si tion and break down to
tur bu lence in duced by small axisymmetric dis tur bances de vel op ing in a lam i nar bound -
ary layer.

The first ob jec tive of this work was to ex am ine nu mer i cally cir cum stances
which lead to the pro duc tion and self-main te nance of tur bu lence at very low Reynolds
num bers. In a two-di men sional, plane chan nel with smooth walls, the o ret i cal con sid er -
ations, ex per i ments and nu mer i cal sim u la tions show that tur bu lence can not per sist be low 
a cer tain Reynolds num ber of about Re » 2200 based on full chan nel height and the cen -
ter line ve loc ity.

The au thors de cided to ini ti ate a nu mer i cal pro gram, us ing a state-of-the-art lat -
tice Boltzmann nu mer i cal tech nique, in or der to pro duce tur bu lence at very low Reynolds 
num bers. This was ac com plished by plac ing reg u larly spaced, two-di men sional rough -
ness el e ments at the wall in a such way that they are per pen dic u lar to the flow in a plane
chan nel. Such a flow con fig u ra tion forces tur bu lence, in the near-wall re gion, to re struc -
ture in a way sug gested by the o ret i cal con sid er ations, (IIIa)wall < 0, in or der to pro mote its
gen er a tion and self-main te nance at very low Reynolds num ber.

The sec ond ob jec tive  was to con firm nu mer i cally the cen tral re sult and the idea
of the the o ret i cal in ves ti ga tions of Jovanovi} and Hillerbrand [26], who ex am ined con -
straints which led to com plete sup pres sion of the ve loc ity fluc tu a tions near the wall. They 
showed an a lyt i cally, us ing only ki ne matic con straints, that the ef fec tive way to damp
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fluc tu a tions in the near-wall re gion is to force them to be pre dom i nantly one-com po nent
(see fig. 1).

For this very spe cial state of wall tur bu lence, it can be proven an a lyt i cally and
con firmed nu mer i cally, us ing the da ta bases from di rect nu mer i cal sim u la tions, that the
tur bu lent dis si pa tion rate van ishes at the wall. Un der such cir cum stances, the to tal en ergy 
dis si pa tion rate, which is the rate of con ver sion of the me chan i cal en ergy of flow into 
heat and which can be eval u ated from the work done against the wall shear stress per unit
mass of the work ing fluid, reaches a min i mum and a large re duc tion of the wall shear
stress must oc cur as a log i cal con se quence. The out come of this work forms a valu able
ba sis for ra tio nal flow and tur bu lence con trol with the aim of pre vent ing lam i nar to tur -
bu lent tran si tion from oc cur ring in the bound ary layer at very high Reynolds num bers or
of achiev ing a large drag re duc tion ef fect in a fully de vel oped tur bu lent flow. The re sults
out lined  above served as the start ing point for iden ti fi ca tion and suc cess ful parameteri-
zation of the mech a nism re spon si ble for tur bu lent drag re duc tion by di lute ad di tion of
high poly mers by Jovanovi} et al. [27].

In or der to pro duce the de sired componentality of the ve loc ity fluc tu a tions lead -
ing to the re al iza tion of one-com po nent tur bu lence in the near-wall re gion, (IIa)wall ® 2/3, 
the au thors per formed ad di tional sim u la tion of a plane chan nel flow with reg u larly
spaced riblet el e ments mounted at the wall and aligned par al lel to the flow di rec tion. For
ap pro pri ate di men sions of the riblet el e ments and spac ing be tween them, tur bu lence in
the midplane be tween the neigh bor ing el e ments is forced to tend to wards the one-com po -
nent state at the wall. By eval u at ing the tur bu lence sta tis tics cor re spond ing only to the
plane mid way be tween the riblet el e ments, it was pos si ble to con firm the re sults of an a -
lyt i cal con sid er ations and to show that, for the state of wall tur bu lence men tioned above,
the tur bu lent dis si pa tion rate van ishes at the wall, lead ing to a large re duc tion of the wall
shear stress.

Computational domain

The sim u lated flow con fig u ra tion and the em ployed co or di nate sys tem are
shown in fig. 2.

For wall-bounded flows, the char ac ter is tic scales are de fined us ing the pa ram e -
ters that are avail able at the wall such as the fluid den sity r, ki ne matic vis cos ity of the
flow me dium n  and shear stress at the wall tw. From these pa ram e ters emerges the ve loc -
ity scale ut:

ut
t

r
= w (1)

which is re lated to the streamwise pres sure gra di ent ¶ ¶P x/ 1 through the mean mo men -
tum equa tions by:

u
P

x
t

d

r
=

¶

¶ 1

(2)
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where d is the channel half-width. In terms of the parameters mentioned above, the length
scale is defined as lt = n/ut. Following common practice, all variables are normalized using
these inner scales and this is identified in the text by the superscript +, e. g. x+ = xut/n.

There are two pos si bil i ties for per form ing nu mer i cal sim u la tions of a tur bu lent
chan nel flow: ei ther to fix the flow rate through the chan nel or to pre scribe the ax ial pres -
sure gra di ent and there fore ut. For our sim u la tions, we chose the lat ter op tion and thereby
the Reynolds num ber Ret, based on ~ut cal cu lated from eq. (2) and the chan nel half-width, 
was fixed, for the flow sim u la tion de scribed be low, to the value:

Re
~

t
td

n
d= = @+u

50 (3)

In or der to sim u late the re quired con di tion IIIa < 0 for the ani so tropy of ve loc ity
fluc tu a tions close to the wall, which  en sures the ap pear ance of tur bu lence at very low
Reynolds num bers, 15 reg u larly spaced two-di men sional rough ness el e ments were
placed at the chan nel walls and per pen dic u lar to the flow di rec tion. A sche matic di a gram
of the sim u lated ar range ment is shown in fig. 3.

The rough ness el e ments were equally sep a rated by a dis tance d+ @ 60 and placed
sym met ri cally, D+ = 0, on  both sides of the chan nel. The non-di men sional height and the
width of the rough ness el e ments were h+ @ 15 and w+ @  0.78, re spec tively. For these con -
di tions, the block age ra tio was 30% (de fined as the ra tio of the area oc cu pied by the
rough ness el e ment to the cross-sec tional area of the chan nel).

For the ge om e try shown in fig. 3, the flow is ho mo ge neous in the spanwise di -
rec tion and quasi-ho mo ge neous in the streamwise di rec tion if the num ber of rough ness
el e ments is suf fi ciently large. Con sid er ing that N = 15 sat is fies the lat ter re quire ment, pe -

38

THERMAL  SCIENCE: Vol. 10 (2006), No. 2, pp. 33-62

Figure 2. Computational domain of a plane channel flow and coordinate system



ri odic bound ary con di tions were used in these  di rec tions. Us ing 1155 ´ 129 ´ 128 equi -
dis tant Car te sian grids in the x1, x2, and x3 di rec tions, the non-di men sional grid spac ing
was Dx

i
+ = 0 78. .

The ad e quacy of the spa tial res o lu tion of a sim u la tion per formed for a con fig u -
ra tion with rough ness el e ments is il lus trated in fig. 4. These re sults con firm that the grid
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Figure 3. Configuration of the roughness elements mounted at the walls of a plane channel
The elements are extended in the spanwise direction x3 (see fig. 2). Only part of the computational
domain is shown

Figure 4. Distribution of the grid ( )Dxi
+  spacing and the local (h+) and average ( )hav

+

Kolmogorov length scale for the channel configuration shown in fig. 3



res o lu tion was suf fi ciently fine to re solve all es sen tial tur bu lence scales. The es ti mated
value of the Kolmogorov length scale h = (n3/eh)

1/4 ob tained from the av er age dis si pa tion
rate across the chan nel per unit mass of the work ing fluid was h

th
+ @ 25.  [see Ap pen dix, eq. 

(23)].
To nu mer i cally pro duce the flow sit u a tion lead ing to re al iza tion of one-com po -

nent tur bu lence close to the wall, N = 30 reg u larly spaced riblet el e ments were placed at
the chan nel walls and par al lel to the flow di rec tion. Fig ure 5 shows a sche matic rep re sen -
ta tion of the flow field for which sim u la tion was per formed for the pre scribed value of the 
Reynolds num ber:

Re
~

t
td

n
d= = @+u

180 (4)

The riblet el e ments were equally sep a rated in the spanwise di rec tion by a dis -
tance d+@ 10 and placed sym met ri cally on  both sides of the chan nel D+ = 0. The non-di -
men sional height and the width of the riblet el e ments were h+ @ 10 and w+ @ 1.4, re spec -
tively.

For the ge om e try shown in fig. 5, sim u la tions were per formed by im pos ing pe ri -
odic bound ary con di tions along the streamwise and spanwise di rec tions us ing 4096 ́  257 ́
´ 240 equi dis tant grid points (in the x1, x2, and x3 di rec tions), which cor re sponds to a
non-di men sional grid spac ing of Dx

i
+ =14. . Fig ure 6 il lus trates the ad e quacy of the spa tial

res o lu tion which guar an tees that all scales are fully re solved within the com pu ta tion do -
main.
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Figure 5. Configuration of a plane channel with riblet elements mounted at the walls
The elements are extended in the streamwise direction x1 (see fig. 2). Only a small section of the
computational domain is displayed



Numerical method

The choice of the nu mer i cal method was mo ti vated by the de mand for an al go -
rithm with small com put ing costs per grid point and time step. Ow ing to the com pli cated
ge om e try, the lat tice Boltzmann method (LBM) was a log i cal and at trac tive choice and
will be briefly de scribed. Fur ther de tails about the his tory and the ory of this com pu ta -
tional tech nique can be found in re view ar ti cles by Benzi et al. [28] and Chen and Doolen
[29] or in the books by Wolf-Gladrow [30] and Succi [31].

The LBM  method was de vel oped dur ing the last 10 years as an al ter na tive ap -
proach to ex ist ing meth ods of com pu ta tional fluid dy nam ics (CFD). The method uti lizes
the fact that in for ma tion  on  the ve loc ity 

r
U  and the pres sure p of a vis cous fluid can be ob -

tained by solv ing a ki netic equa tion for a one-par ti cle dis tri bu tion func tion f in stead of
Navier-Stokes equa tions di rectly. The func tion 

~ ~
( , , )f f=
r r
x r t  de pends on the mo lec u lar

ve loc ity 
r
x, the po si tion in space 

r
r  and the time ~t . The hy dro dy namic quan ti ties are ob -

tained from the mo ments of the dis tri bu tion func tion.
A very pop u lar ki netic model is de scribed by the Boltzmann equa tion to gether

with the so-called Bhatnagar-Gross-Krook (BGK) ansatz  [32] for the col li sion op er a tor:
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Figure 6. Distribution of the grid spacing ( )Dxi
+  and the local (h+) and average ( )hav

+

Kolmogorov length scale for the channel configuration shown in fig. 5
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where 
r

F  is the external force. The function 
~
f eq  corresponds to the equilibrium

(Maxwell-Boltzmann) distribution and l is a relaxation time. This equation is discretized 
in time and space. Additionally, a finite set of velocities 

r
ci  for 

r
x has to be defined. As a

result of discretization, the following non-dimensional equation is obtained:
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-
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2

w
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where fi is the distribution function of the velocity 
r
ci . A detailed derivation of how the

lattice Boltzmann equation recovers the Navier-Stokes equation can be found in [33] and
especially for eq. (6) in [34].

Equa tion (6) ap pears to be a first-or der scheme but is in fact sec ond or der in time  
[35]. With out loss of gen er al ity we may choose dt = 1 for the time step and r = 1 for the
den sity. The force den sity 

r
e is given by the pres sure gra di ent ac cord ing to 

r r
e = Ñp,

whereby e1 is the only re main ing com po nent in our case. The mac ro scopic be hav ior of
eq. (6) is ob tained by a Chap man-Enskog pro ce dure [36] to gether with a Tay lor ex pan -
sion of the Maxwell-Boltzmann equi lib rium dis tri bu tion for small ve loc ity (small Mach
num ber). For this equi lib rium dis tri bu tion:

f i
eq

p
i

s s

i i

s

t
c U

c

U U

c

c c

c
= + + -

æ

è

ç
ç

ö
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ê
ê

ù

û

ú
ú

(7)

it can be shown that the Mach num ber must be |u/cs| n 1 in or der to sat isfy  the in com press ible 
Navier-Stokes equa tions. The pa ram e ters tp and p ci=

r 2
 de pend on the discretization of the

mo lec u lar ve loc ity space. Var i ous mod els can be found in [37]. For the pres ent sim u la tion a
three-di men sional model with 19 ve loc i ties 

r
ci , i = 0, ..., 18 (D3Q19) was em ployed. The

D3Q19 model has the pa ram e ters  t0 = 1/3, t1 = 1/18, and t2 = 1/36. A sketch of 
r
ci  is given in

fig. 7. From the Chap man-Enskog pro ce dure  the ex pres sion for the vis cos ity n in terms of the 
re lax ation pa ram e ter w fol lows as  n =  (1/6)[(2/w) – 1].

The most com monly used con di tion to im ple ment solid walls in the LBM is the
so called bounce-back rule. This rule forces the pop u la tions leav ing the com pu ta tional
do main to re turn to the node of de par ture with the op po site ve loc ity. This rule is very sim -
ple and en forces mass con ser va tion. Here it is im ple mented in such a way that the solid
bound aries  are placed half way be tween two nodes. This is re ferred to in the lit er a ture as
a bounce-back on the link (BBL). It has been shown that the BBL scheme gives sec ond-
-or der ac cu rate re sults for plane bound aries [38]. In com bi na tion with he marker-and-cell 
ap proach, even ge om e tries much more com plex than plane walls can be matched to the

42

THERMAL  SCIENCE: Vol. 10 (2006), No. 2, pp. 33-62



grid. This ex plains the pop u lar ity of the
method for study ing po rous me dia or equiv -
a lent flow prob lems [39].The bounce-back
rule is also used for treat ment of the flow
close to the solid bound aries in pres ent.

Our im ple men ta tion of LBM is val i -
dated against the pseudo-spec tral sim u la -
tion of Kim et al. [5] for plane chan nel flow
at Ret » 180. Fig ure 8 shows that pro files of
the mean ve loc ity, root-mean-square ve loc -
ity fluc tu a tions, tur bu lent shear stress u u1 2
and the bal ance of the en ergy (k = q2/2)
equa tion  agree closely  with the re sults of
the study men tioned above. Fig ure 9 dis -
plays the isosurface of the in stan ta neous
vorticity which vi su ally il lus trates the de -
vel op ment of typ i cal flow struc tures in
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Figure 7. Lattice geometry and the velocity 
vectors 

r
ci for the three-dimensional 19-

-velocity D3Q19 model

Figure 8. Comparison of a lattice Boltzmann and a pseudo-spectral simulation of Kim et al.
[5] for a plane channel flow at Ret » 180. Non-dimensionalized profiles of: (a) mean velocity,
(b) rootmean-square velocity fluctuations, (c) turbulent shear stress u u1 2, and (d) the
balance of the k equation all scaled on the inner variables



wall-bounded tur bu lent flows. It is worth not ing that the re sults dis played in figs. 8 and 9
were ob tained  with a grid size of 4096 ´ 257 ´ 256, re sult ing in a res o lu tion Dx

i
+ =14. .

This res o lu tion is nearly twice as coarse as that for the sim u la tion per formed for a chan nel 
con fig u ra tion with the rough ness el e ments.

For all sim u la tions re ported in this pa per, an ini tial field was gen er ated by  a su -
per po si tion of the uni ver sal ve loc ity dis tri bu tion 

r
u

0
+  and per tur ba tion pro duced by a pe ri -
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Figure 9. Isosurface of instantaneous vorticity 
r r
Ñ ´ =U u/ ( / ) .t n2 0 4 scaled on the inner

variables for a plane channel flow at Ret » 180 (color image see on our web site)



Al though the ex po nen tial func tions vi o late the incompressibility con di tion, they 
serve to damp the am pli tude of the ed dies near the wall and avoid  sta bil ity  prob lems 
dur ing the ini tial phase  of the sim u la tion. In the pres ent sim u la tion, the con stants in the
uni ver sal ve loc ity dis tri bu tion:

U

u

x u
C1 21

t

t

k n
= +ln (9)

were chosen as k = 0.4 and C = 5.2. The other parameters involved in eq. (8) were set to
A+ @ 0.07, B+ @ 0.14, and Nc = 8. The initial velocity field corresponds to a finite array of
periodic spanwise eddies with cen ters along a line par al lel to the x1 axis and one
streamwise eddy cen ter ing in the mid dle of the x2-x3 plane. The cen ter of the first
spanwise eddy was lo cated at x

i

c
1

= +d  from the in flow bound ary and the rest of the ed dies 
were sep a rated at reg u lar in ter vals of 2d+.

Results

Experiments with surface-mounted roughness elements

Start ing from the ini tial field, gov ern ing equa tions were in te grated un til the flow 
reached a sta tis ti cally steady-state. This state could be iden ti fied by mon i tor ing run ning
av er ages of the tur bu lence sta tis tics very close to the wall and at the chan nel cen ter line.

Fig ure 10 shows that the rel a tive tur bu lence in ten sity con verges to about 40%
close to the wall and 10% at the chan nel cen ter line, which is con sis tent with the data mea -
sured by Fischer, Jovanovi} and Durst [40] in a fully de vel oped tur bu lent chan nel flow at
low Reynolds num bers. When the sta tis ti cally steady state had been reached, the equa -
tions were fur ther in te grated in or der to prove self-main te nance of tur bu lence over a suf -
fi ciently long in ter val of time and to in crease the sta tis ti cal sam ple for the eval u a tion of
var i ous cor re la tions of in ter est. Cal cu la tions of the plane chan nel flow with smooth walls
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Fig ure 10. Rel a tive tur bu lence in -
ten sity at two mon i tor ing lo ca tions 
close to the wall and at the chan nel
cen ter line as a func tion of nor mal -
ized time t = t/(d/ut) of in te gra tion.
These re sults con firm the per sis -
tence and self-main te nance of tur -
bu lence over more than 6000
in te gral time-scales of the flow



start ing from iden ti cal ini tial and bound ary con di tions yielded a lam i nar flow field af ter
very few in te gra tion time steps.

Mean flow

Af ter the sim u la tions had reached a sta tis ti cally steady-state, the mean flow
prop er ties were cal cu lated by av er ag ing in stan ta neous flow fields over time and also over 
the ver ti cal planes along the gap be tween two neigh bor ing rough ness el e ments. For large
num bers of sym met ri cally ar ranged and reg u larly spaced rough ness el e ments, such av er -
ag ing is per mit ted since the mean flow is ex pected to be sym met ri cal and quasi-pe ri odic
in the streamwise di rec tion. This spe cific type of time and space av er ag ing al lowed a con -
sid er able in crease in the sample for the determination of turbulence statistics.

The pro files of the mean ve loc -
ity in flow di rec tion for three
cross-sec tions be tween the rough -
ness el e ments are shown in fig. 11.
These data are non-dimensiona-
lized by the wall fric tion ve loc ity 
U U

1 1
+ = /~ut cal cu lated from the

pres sure gra di ent along the chan nel
us ing eq. (2) and plot ted vs. the nor -
mal ized dis tance from the wall 
x x u

2 2
+ = ~

t/n. The self-sim i lar ity of
these pro files in in ner scal ing im -
plies that the flow is  dom i nated en -
tirely by the con di tion at the wall.
The flow in the near-wall re gion is
very weak and shows clear signs of
re ver sal. The re versed flow oc cu -
pies the en tire gap be tween the two
rough ness el e ments. The data in fig. 

11 show that the com puted re sults cor re spond to a Reynolds num ber of:

Re c
cU

= »
2

940
d

n
(10)

based on the full channel height (2d) and the mean centerline velocity ( )U c .

Turbulence statistics

The pro files of all three tur bu lence in ten sity com po nents ¢ =u ui i
( ) ,/2 1 2  i = 1, 2, 3, 

nor mal ized with ~ut are shown in fig. 12. The col lapse of these pro files is not as good as
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Figure 11. Normalized mean velocity profiles in the
flow direction



for the mean flow, shown in fig. 11, but the dis played data  show that the fluc tu at ing ve -
loc ity com po nents are rea son ably cor re lated with ~ut across the en tire flow field. The gen -
eral shape of these pro files dif fers con sid er ably from those of the smooth chan nel shown
in fig. 8. The max i mum of tur bu lent in ten sity is shifted away from the near-wall re gion
and the in ten si ties of nor mal and spanwise ve loc ity com po nents are lower than for tur bu -
lence developing along the smooth bound aries.

In close prox im ity to the wall, tur bu lence un der goes con sid er able mod i fi ca tion
ow ing to the pres ence of the sur face rough ness. Rough ness el e ments par tially in hibit mo -
tions in the streamwise di rec tion, which re sult in com pa ra ble growth of the streamwise ¢u1
and the lat eral ¢u3 in ten sity com po nents. Since the pres ence of the solid bound ary sup -
presses heavily mo tions in the di rec tion nor mal to the wall ( )¢ »u2 0 , fluc tu a tions are
forced to re struc ture from the sta ble state lo cated at the one-com po nent limit to wards the
un sta ble state which is around the iso tro pic two-com po nent limit (see fig. 1).

Fig ure 13 shows traces of the joint vari a tions of the  invariants IIa and IIIa of aij

across the ani so tropy-in vari ant map. This fig ure in di cates that rough ness el e ments force
the ani so tropy very close to the wall to de crease. As a con se quence, the invariants, which
lie along the two-com po nent state, shift to wards the left cor ner of the ani so tropy map,
which cor re sponds to the iso tro pic two-com po nent tur bu lence.
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Figure 12. Non-dimensionalized root-mean-
-square velocity fluctuations versus the
normalized distance from the wall:
(a) x1

+ = 13.23; (b) x1
+ = 28.79

(c) x1
+ = 44.36



The tur bu lent shear stress pro files nor mal ized in in ner scal ing are shown in fig.
14. Ow ing to the bro ken ho mo ge ne ity in the streamwise di rec tion due to the pres ence of
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Fig ure 13. De vel op ment of tur bu lence across the ani so -
tropy-in vari ant map
The trend in the sim u la tion data near the wall in di cates a ten dency 
to wards the iso tro pic two-com po nent limit

Fig ure 14. Tur bu lent shear stresses u u1 2 and u u1 3 non-dimen-
sionalized with ~ut vs. the nor mal ized dis tance from the wall



the rough ness el e ments, apart from u u1 2, ad di tional shear stress u u1 3 ex ists which is,
how ever, very small. The com puted pro files of u u1 2 re veal that it is neg li gi ble across the
en tire re gion sep a rated be tween the rough ness el e ments. In the re gion above the rough -
ness el e ments u u1 2 shows a lin ear rise up to the chan nel cen ter line. This be hav ior of  u u1 2
is sim i lar to the shear stress de vel op ment in a chan nel flow with smooth walls, shown in
fig. 8, with the dif fer ence, how ever, that the over all level is much lower.

The bal ance of the equa tion which gov erns the tur bu lent ki netic en ergy:
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is shown in fig. 15. All terms which contribute to the balance of the k equation,
convection Dk/Dt, production Pk, turbulent transport Tk, pressure transport Pk, viscous
dissipation e, and the viscous diffusion Dk, are scaled with inner variables. The computed

data show that the production and the viscous dissipation processes are dominant in  the
balance of  k. These two processes are, however, out of equilibrium across the entire flow
field. In the region between the roughness elements, only  the dissipation process is active 
and is balanced by the viscous diffusion. In the outer flow, above the roughness elements, 
the production process is dominant in the budget of the k equation and is balanced
partially by the dissipation and to a larger extent by other processes of transport nature.
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Figure 15. Terms conributing to the balance of the energy k
equation normalized by ~ /ut n4 2



Fig ure 16 shows  the isosurface of the in stan ta neous  vorticity across the en tire
flow do main scaled on the in ner vari ables. This form of flow vi su al iza tion il lus trates
qual i ta tive fea tures of tur bu lence at very low Reynolds num ber: for ma tion of rel a tively
large, quasi-pe ri odic, weakly dis or dered struc tures elon gated in the streamwise di rec tion  
with  small spread of scales. This pat tern dif fers from sim i lar struc tural in for ma tion
shown in fig. 9 for a plane chan nel flow de vel op ing along smooth walls.

Experiments with surface-mounted riblet elements

In this sec tion, we turn at ten tion to the anal y sis of the sim u la tion re sults car ried
out for the chan nel flow with riblet el e ments. The anal y sis to be pre sented is re stricted
only to the midplane be tween the el e ments where tur bu lence is forced to reach the
one-com po nent limit at the wall. Ex am i na tion of the sta tis ti cal prop er ties of such tur bu -
lence pro vides the pos si bil ity not only of ver i fy ing the the o ret i cal con sid er ations of
Jovanovi} and Hillerbrand [26], but also of dem on strat ing that these con sid er ations are
di rectly re lated to the chief mech a nism of wall shear stress re duc tion in tur bu lent
wall-bounded flows.

Mean flow

Fig ure 17 shows mean ve loc ity pro files in the chan nel with smooth and with
riblet walls nor mal ized with wall fric tion ve loc i ties ut and ~ut cal cu lated from the pres sure 
gra di ent along the chan nel us ing eq. (2). The data dis played in this fig ure show that the
com puted re sults cor re spond to a Reynolds num ber of:
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Figure 16. Isosurface of vorticity 
r r
Ñ ´ =U u/ ( ~ / ) .t n2 0 4  for the configuration shown in fig. 3

and Ret @ 50, t » 600  (color image see on our web site)



Re c
cU

= »
2

6584
d

n
(12)

based on the full channel height and the mean centerline velocity.
Since the Reynolds num bers and the pres sure drops for sim u lated flows with and 

with out riblets are al most iden ti cal, we con clude from fig. 17, by tak ing into ac count the
three fold in crease in the wet ted sur face area, that riblet el e ments greatly re duce the wall
shear stress tw and that the av er age wall shear stress re duc tion (SR) de fined as:

SR w

w

= -1
( )

)

t

t
riblet

smooth(
(13)

is about SR » 66%.

Pro files of the mean ve loc ity gra di ents shown in fig. 18 re veal a dra matic re duc -
tion in the wall shear stress in the midplane be tween the riblet el e ments. The data pre -
sented in this fig ure sug gest that the lo cal value of SR:

( )
)

)
.SR mid

w riblet
midplane

w smooth

(

(
= -1

t

t
(14)

is (SR)mid. @ 92% and exceeds the value:

( )
( )

( )
.SR

w

w
lam

smooth
laminar

smooth
turbulent

= -1
t

t
(15)

(SR)lam. @ 85%, which corresponds to a fully developed laminar channel flow with
smooth walls at the same Reynolds number (see [13]). 
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Fig ure 18. Nor mal ized mean ve loc ity gra di -
ents in a plane chan nel with smooth walls
and for the flow re gion lo cated in a
midplane be tween the riblet el e ments

Fig ure 17. Nor mal ized mean ve loc ity pro -
files in a plane chan nel with smooth walls
and in the flow re gion lo cated in a midplane 
be tween the riblet elements



Turbulence statistics

Fig ure 19 pro vides a dem on -
stra tion for  mod i fi ca tions of tur -
bu lence in duced by the pres ence
of the riblet el e ments. The data
pre sented cor re spond to the flow
re gion in the midplane be tween
the riblet el e ments and are nor -
mal ized with the wall fric tion ve -
loc ity cal cu lated from eq. (2).

The dis played pro files of the
in ten sity com po nents sug gest that
the prin ci pal mech a nism of tur bu -
lence mod i fi ca tion is as so ci ated
with the abil ity of the riblets to de -
lay the growth of tur bu lence in the 
re gion ad ja cent to the wall. Near
the wall the lat eral in ten sity com -
po nent is sup pressed by the riblets 
and forced to fol low the trend of
the in ten sity  com po nent per pen -
dic u lar to the wall. Such be hav ior

of the tur bu lent stresses  im plies that these will as sume a form as in axisymmetric tur bu -
lence and tend to wards the one-com po nent limit at the wall. Away from the wall re gion,
tur bu lent in ten si ties fol low a sim i lar pat tern com mon  for flows de vel op ing along smooth 
bound aries.

For the chan nel con fig u ra tion with the riblet el e ments, the sim u lated da ta base
pro vided the op por tu nity to ex am ine the evo lu tion of tur bu lence across the ani so -
tropy-in vari ant map and con firm the the o ret i cal de duc tion that an in crease in ani so tropy
near the wall is as so ci ated with a sig nif i cant de crease in the wall shear stress. The re sults
of these con sid er ations are il lus trated  in fig. 20. In the midplane be tween the riblet el e -
ments, ani so tropy is greatly in creased in the vis cous sublayer in com par i son to the cor re -
spond ing flow re gion of a fully de vel oped chan nel flow (see fig. 20b). For the sim u lated
ge om e try and ar range ment of the riblet el e ments, tur bu lence in the midplane be tween the
riblets reaches the one-com po nent state at the wall. Sim u la tion re sults show that the ani -
so tropy is only mar gin ally al tered at the tip of the riblets in com par i son with the level
which the ani so tropy attains in the viscous sublayer of a turbulent flow developing along
smooth bound aries (see fig. 20a). Away form the near-wall re gion, the evo lu tion of ani -
so tropy fol lows sim i lar trends in mag ni tude and char ac ter as in a fully de vel oped plane
chan nel flow.

The dis cussed be hav ior of tur bu lence in the near-wall cov ered with riblets is re flected 
in the dis tri bu tion of the tur bu lent dis si pa tion rate which is pre sented in fig. 21. Ow ing to
abil ity of riblets to sig nif i cantly damp  near-wall tur bu lence in the midplane be tween
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Fig ure 19. Non-dimensionalized root-mean-square of
the ve loc ity fluc tu a tions vs. nor mal ized dis tance from
the wall for the smooth chan nel and in the midplane be -
tween the riblet el e ments



them, the tur bu lent dis si pa tion rate van ishes at the wall in stead of reach ing its max i mum
as in flows de vel op ing along smooth walls. Fig ure 21 also shows that the tur bu lent dis si -
pa tion rate above the riblets ex ceeds the value which cor re sponds to the flow over a
smooth sur face. By tak ing into ac count the data dis played in fig. 20, it ap pears that an in -
crease in ani so tropy re sults in a de crease in the dis si pa tion rate and that a de crease in ani -
so tropy is as so ci ated with an in crease in the dis si pa tion rate at the wall. These are fun da -
men tal mech a nisms of  flow con trol which are rel e vant for the un der stand ing  of tur bu lent 
drag re duc tion.
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Figure 21. Distributions of the turbulend dissipation rate e vs.
distance from the wall normalized on inner variables in a
plane channel flow with smooth walls and in the midplane
between the riblet elements

Figure 20. Anisotropy invariant mapping of turbulence in a channel flow with the riblet
elements: (a) above the riblet; (b) in the plane between the riblet elements



The bud get of the en ergy equa tion pre sented in fig. 22 re veals that the riblets act to sup -
press tur bu lent ac tiv ity very close to the wall and shift it to wards the buffer re gion. The re -
duc tion of the tur bu lent dis si pa tion rate near the wall is ac com pa nied by a de crease in the
tur bu lent pro duc tion Pk, which both at tain max i mum val ues slightly fur ther away from the
wall than in a flat chan nel. In con trast to flows de vel op ing along smooth bound aries in the
midplane be tween the riblets ow ing to ewall ® 0 as x2 ® 0, the trans port term Tk and the vis -
cous dif fu sion Dk term ex hibit sim i lar trends very close to the wall (see fig. 8).

Fig ure 23 shows the isosurface of the in stan ta neous vorticity field which vi su -
ally il lu mi nates a slight re duc tion in the scale sep a ra tion be tween the large scales (L) and
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Figure 23. Isosurface of instantaneous vorticity 
r r
Ñ ´ =U u/ ( ~ / ) .t n

2 0 4  scaled on the
inner variables for a plane channel flow with riblets shown in fig. 5 at Ret  » 180
(color image see on our web site)

Figure 22. Terms contributing to the balance of the energy k
equation scaled on the inner variables for a smooth channel
and in the region between the riblet elements



the small scales (h) in the flow and laminarization of the layer very close to the wall due
to ac tion of the riblet el e ments. In the close vi cin ity of the wall, tur bu lent ac tiv ity is
greatly re duced in com par i son with the cor re spond ing re gion of the chan nel flow with
smooth walls shown in fig. 9.

Conclusions

A di rect nu mer i cal sim u la tion was per formed of a plane chan nel flow, with the
two-di men sional rough ness el e ments mounted at the walls and placed per pen dic u lar to
the flow. Us ing the lat tice Boltzmann nu mer i cal method, all scales were re solved in the
com pu ta tional do main with 1155 ´ 129 ´ 129 grid points. The nu mer i cal re sults con firm
the per sis tence of tur bu lence at a Reynolds num ber of Re @ 940, based on the cen ter line
ve loc ity and full chan nel width.

The com puted tur bu lence lev els at the chan nel cen ter line and in close prox im ity
to the wall were found to be in agree ment with typ i cal val ues for a fully de vel oped tur bu -
lent chan nel flow. The col lapse of the mean ve loc ity pro files and the self-sim i lar ity of
tur bu lence sta tis tics when scaled on  in ner vari ables dem on strate that the sim u lated flow
is con trolled entirely by conditions at the wall. Ex am i na tion of the en ergy bal ance sug -
gests that the flow is out of equi lib rium and that the pro duc tion of en ergy is larger than
the vis cous dis si pa tion. The com puted in stan ta neous flow fields show the pres ence of
weakly dis or dered, quasi-pe ri odic struc tures elon gated in the flow direction.

Ex am i na tion of the sim u lated data shows that the rough ness el e ments sig nif i -
cantly sup press streamwise ve loc ity fluc tu a tions near the wall. Ow ing to the block age ef -
fect of the rough ness el e ments, the streamwise and the spanwise ve loc ity fluc tu a tions
grow at nearly the same rate close to wall. Such be hav ior of the ve loc ity fluc tu a tions pre -
vents large ani so tropy from de vel op ing in the near-wall re gion, which is the es sen tial fea -
ture of wall tur bu lence along smooth bound aries at low Reynolds num bers. Hence the
com puted re sults con firm that the chief mech a nism re spon si ble for self-main te nance of
tur bu lence at very low Reynolds num bers is re lated to the re duc tion of the ani so tropy in
the ve loc ity fluctuations very close to the wall.

Us ing the same nu mer i cal al go rithm, sup ple men tary sim u la tions were per -
formed of a plane chan nel flow with the riblet el e ments aligned par al lel to the flow di rec -
tion. Us ing 4096 ´ 257 ´ 240 equi dis tant grids, all scales were re solved within the com -
pu ta tion do main, per mit ting de tails to be ob tained of the chief mech a nism as so ci ated
with tur bu lence mod i fi ca tion by riblets and their in flu ence on the re duc tion of the wall
shear stress.

Nu mer i cal re sults show that riblets with ul tra-thin fins and equal finheight to
finspacing of about 10 vis cous length scales in crease the ani so tropy of tur bu lence close
to the wall. Ani so tropy in vari ant-map ping of tur bu lence in the midplane be tween the
riblets re vealed that tur bu lence at tains the one-com po nent state at the wall. For such a
lim it ing state of wall tur bu lence, nu mer i cal sim u la tion con firmed that  tur bu lence is 
damped in close prox im ity of the wall by sup pres sion of the lat eral ve loc ity fluc tu a tions
which are con strained to fol low the same trend as the fluc tu a tions perpendicular to the
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wall. In addition the tur bu lent dis si pa tion rate is forced to van ish at the solid sur face and
sig nif i cant  re duc tion of the wall shear stress oc cur which over weight the re duc tion of the
wall shear stress if the flow as sumed a lam i nar state. Hence  the sim u lated re sults con firm
that the chief mech a nism re spon si ble for re duc tion of the wall shear stress is as so ci ated
with an in crease in the ani so tropy of tur bu lence in the region very close to the wall.

Acknowledgments

The work pre sented was funded by KONWIHR, through the BESTWIHR and
DiSiViGT pro jects and through  grants Du 101/54-3 and Du 101/58-1 from the Deut sche
Forschungsgemeinschaft. The pro duc tion runs for this study were car ried out on ma -
chines in the Leibnitz Com put ing Cen ter (LRZ) at the Tech ni cal Uni ver sity Mu nich, the
Re gional Com put ing Cen ter (RRZE) at the Uni ver sity of Erlangen-Nürnberg, the John
von Neumann-Institut for Com put ing (NIC) in Jülich and the Com put ing Cen ter at the
Uni ver sity of Bay reuth. All this sup port is grate fully ac knowl edged.

Appendix

Transition and breakdown to turbulence induced by small
axisymmetric disturbances developing in a laminar, flat plate
boundary layer

Start ing from the Navier-Stokes and con ti nu ity equa tions for a vis cous in com -
press ible fluid:
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and introducing the conventional method of separating the instantaneous velocity ui and
the pressure p into the mean-laminar flow and the disturbances ¢ui  and ¢p  su per im posed
on it:

u U u p P pi i i= + ¢ = + ¢, (17)

one obtains the equations for the disturbances:
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In the der i va tion of the above equa tions, it is as sumed that the dis tur bances are
much smaller than the cor re spond ing quan ti ties of the mean flow:
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¢ ¢u U p Pi in n, (19)

and that they satisfy the Navier-Stokes and the continuity equations.
If we con sider the dis tur bances to be ran dom, then by sys tem atic ma nip u la tion

of eq. (18) it is pos si ble to ob tain trans port equa tions for the “ap par ent” stresses (see, for
ex am ple [41]):
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In the above equa tions, one can iden tify two dif fer ent types of un known cor re la -
tions: the ve loc ity-pres sure gra di ent cor re la tions (Pij) and the dis si pa tion cor re la tions
(eij). These cor re la tions must be ex pressed in terms of Ui and ¢ ¢u ui j  in or der to close the re -
sul tant eq. (20) for the ap par ent stresses.

To il lu mi nate the sta tis ti cal dy nam ics of the ap par ent stresses dur ing the lam i -
nar-tur bu lent tran si tion pro cess, we may uti lize the clo sure pro pos als for eij and Pij elab o -
rated in de tail by Jovanovi} [19]. Us ing the two-point cor re la tion tech nique and the in -
vari ant the ory, he sug gested the fol low ing ap prox i ma tions for the un known terms in the
trans port equa tions for the ap par ent stresses:
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Here A and F are sca lar func tions that de pend on the ani so tropy invariants and
the Reynolds num ber based on the Tay lor microscale, Rel = lq/n, and eh = 5nq2/l2 is the
ho mo ge neous part of the dis si pa tion rate [19]:
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q

x xk k
h (23)

The above clo sure pro pos als sat isfy the two-com po nent limit and there fore
realizability, co in cide with the ex act so lu tions avail able for van ish ing ani so tropy in the
dis tur bances, be have prop erly for low and large Reynolds num bers and re duce to an ap -
pro pri ate tensorial form for the axisymmetric dis tur bances.

Us ing the sug gested forms for eij and Pij, the trans port equa tions for the ap par ent 
stresses may be writ ten in the closed form:
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We may fol low the same an a lyt i cal path for the treat ment of the trans port equa -
tion for the ho mo ge neous part of the dis si pa tion rate eh. Af ter lengthly der i va tions, which
were elab o rated by Jovanovi} [19], the fol low ing equa tion emerges in a closed form:
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Here y is an other sca lar func tion which also de pends on the ani so tropy
invariants and the Reynolds num ber Rel.

Con trac tion of the trans port equa tions for the ap par ent stresses, eq. (20), yields
the en ergy equa tion (k = q2/2) for the dis tur bances:
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If we con sider tran si tion of the flow in a flat plate bound ary layer, then the en -
ergy equa tion im me di ately sug gests sta bil ity to wards small dis tur bances if the pro duc -
tion is bal anced by the dis si pa tion:

Pk @ eh (27)

The equi lib rium con straint leads to the equa tion for the en ergy:
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which is of boundary layer character and does not allow amplification of sta tis ti cally
sta tion ary dis tur bances in the bound ary layer [42].

In sert ing the equi lib rium con straint Pk @ eh into the dis si pa tion rate equa tion:

(29)
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and specifying that the dissipation rate is always positive, eh ³ 0, we deduce the transition
criterion in terms of the Reynolds number based on the intensity (q2), the length scale (l)
and the anisotropy (IIa, IIIa) of the disturbances as follows:

2A – y = 0 (30)
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For a cer tain mag ni tude (IIa) and char ac ter (IIIa) of the ani so tropy in the dis tur -
bances,  the de rived tran si tion cri te rion (30) sug gests the per mis si ble mag ni tudes for the
in ten sity and the length scale of dis tur bances Rel £ (Rel)crit that guarantee bal ance  (27)
(Pk  @ eh with eh ³ 0) and there fore main te nance of the lam i nar flow re gime in a flat plate
bound ary layer.

The tran si tion cri te rion is de ter mined from the re quire ment that the lam i nar
bound ary layer should be neu trally sta ble to small, sta tis ti cally sta tion ary axisymmetric 
dis tur bances, which is equiv a lent to the lo cal (and there fore also global) equi lib rium
dis cussed. As a con se quence of this re quire ment, the en ergy k can not grow in the
bound ary layer above cor re spond ing val ues of the free stream. How ever, this con clu -
sion does not hold for the scale l, which must fol low in creases in the shear layer thick -
ness  (l  ~  d) as it de vel ops down stream. This be hav ior of q2 and l im plies that the dis -
si pa tion rate eh = 5nq2/l2 will de crease with in creas ing Reynolds num ber un til it
reaches some min i mum value re quired by the dis si pa tion rate equa tion to in duce tran si -
tion and break down to tur bu lence.

Us ing ex pres sions for the sca lar func tions A and y  con structed an a lyt i cally by
Jovanovi}, Oti}, and Bradshaw [43]:
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W @ - + +00306 0313 0009604 102082. Re . . Re .l l

(33)

it is easy to prove from criterion (30) that for IIIa > 0, (IIa)wall = 2/9, and (IIa)4 ³ 0.15 the
laminar regime in a flat plate boundary layer will remain  up to infinite Reynolds
numbers. For  IIIa < 0 and (IIa)wall = 1/6 the transition criterion (30) cannot be satisfied for
any value of Rl and therefore we expect that for such disturbances turbulence will appear
in the boundary layer at very low Reynolds numbers. These analytical results
corresponding to two different modes of the axisymmetric disturbances are displayed in
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fig. 1. This figure suggests that the most effective way to initiate and maintain turbulence
at very low Reynolds number is to reduce the anisotropy in the disturbances close to the
wall to a minimum by forcing these to tend towards the isotropic two-component limit at
the wall.
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