PERSISTENCE OF THE LAMINAR REGIME IN A FLAT PLATE
BOUNDARY LAYER AT VERY HIGH REYNOLDS NUMBER

by

Jovan JOVANQVIC, Bettina FROHNAPFEL,
Edin SKALJIC, and Milenko JOVANOVIC

Original scientific paper
UDC: 532.517.2/.4:533.6.011
BIBLID: 0354-9836, 10 (2006), 2, 63-96

Starting from the Navier-Stokes and the continuity equations of a viscous in-
compressible fluid, a statistical theory is developed for the prediction of tran-
sition and breakdown to turbulence in a laminar boundary layer exposed to
small, statistically stationary axisymmetric disturbances. The transport equa-
tions for the statistical properties of the disturbances are closed using the
two-point correlation technique and invariant theory. By considering the lo-
cal equilibrium to exist between production and viscous dissipation, which
forces the energy of the disturbances in the boundary layer to be lower than
that of the free stream, the transition criterion is formulated in terms of the
anisotropy of the disturbances and a Reynolds number based on the intensity
and the length scale of the disturbances. The transition criterion determines
conditions that guarantee maintenance of the laminar flow regime in a flat
plate boundary layer. It is shown that predictions of the transition onset de-
duced from the transition criterion yield the critical Reynolds number, which
is in good agreement with the experimental data obtained under well-con-
trolled laboratory conditions reported in the literature. For the preferred
mode of the axisymmetric disturbances, for which the intensity of the distur-
bances in the streamwise direction is larger than in the other two directions,
the analysis shows that the anisotropy increases the critical Reynolds num-
ber. Theoretical considerations yield the quantitative estimate for the mini-
mum level of the anisotropy of the free stream required to prevent transition
and breakdown to turbulence. The numerical databases for fully developed
turbulent wall-bounded flows at low and moderate Reynolds numbers were
utilized to demonstrate the stabilizing and destabilizing role of the anisotropy
in the disturbances on the development of the transition process in
wall-bounded flows. The stabilizing role of increased anisotropy in a free
stream on the boundary layer development was successfully tested experi-
mentally in a large wind tunnel by maintaininég the stable laminar regime in a
flat plate boundary layer up to (Rey)r= 4-10".
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Introduction

The question of whether the laminar flow regime in a flat plate boundary layer
can persist at high Reynolds numbers is of fundamental and practical importance. Taylor
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[1] concluded, from the analysis of the boundary layer equations, that in absence of any
external disturbances the laminar regime can persist up to infinite Reynolds number. The
experimental work carried out by Dryden [2] showed that the point of transition from
laminar to turbulent flow depends on the level of turbulence of the free stream. For small
intensities of turbulence he found that the boundary layer remained laminar up to (Re,); =
=x,U o /v=1.1-10° where x, is the distance from the leading edge of the plate, U , is the
velocity of the free stream and v is the kinematic viscosity of the fluid. Later investiga-
tions by Schubauer and Skramstad [3] conducted in the Dryden wind tunnel (which is
still in use at the University of Southern California) with a very low level of the back-
ground turbulence revealed that the transitional Reynolds number can be increased up
to (Re,); = 2.8-10°. They found that the transition point moved progressively towards
higher Reynolds numbers with decreasing the free stream turbulence until the relative
value of 0.08% was attained. Further reduction of free stream turbulence did not result in
an increase of (Re,)r . In the subsequent experiments, Wells [4] and Spangler and Wells
[5] obtained the transition Reynolds number (Re,); = 5.25-10%, which was nearly double
that of Schubauer and Skramstad. They argued that not only the level of turbulence but
also the energy spectrum and the nature of the disturbances has to be taken into consider-
ation. Exceptionally large values of the transition Reynolds number were also reported
by Saric and Reynolds [6], who obtained (Re,); =3.4-10° in a former NASA-Langley sta-
bility tunnel (currently under operation at the Virginia Polytechnic Institute,
Blacksburg), Kachanov, Kozlov and Levchenko [7] (Re,); = 4.3-10° in the ITAM-
-Novosibirsk tunnel specially designed for investigations of the laminar turbulent transi-
tion process and by S. Bake (1999, personal communication) (Re,); = 3.6-10° in the lami-
nar wind tunnel of the Herman-Féttinger Institute of the Technical University Berlin.

The most careful work to date was carried out by Pfenninger [8]. In a series of
experiments, he managed to reduce the disturbances in the entry region of the pipe flow to
an extremely low level and reach the highest value of the transition Reynolds number of
(Re,)r = 50-10°, which is close to the corresponding values of the wing sections of com-
mercial aircraft. In interpretation of the above result one must, however, account for the
stabilizing effect of the flow acceleration in the entry region of the pipe. Hinze [9] esti-
mated that owing to this stabilizing effect the above value of (Re,); should be decreased
by at least a factor of ten in order to be comparable to the data obtained in flat plate
boundary layers.

All of the evidence mentioned above suggests that the laminar regime in a
boundary layer can be maintained at very high Reynolds numbers. Although there has
been an explosion of activity during the last two decades, exploring theoretical, experi-
mental, and numerical capabilities, the overall progress achieved in understanding the in-
teraction mechanisms between the free stream disturbances and the boundary layer is dis-
appointingly slow. The systematic quantitative prediction of transition is a painful issue
and techniques capable of controling transition rationally are lacking. An attempt is
made here to shed new light on this basic problem of the boundary layer receptivity by
considering the influence of the anisotropy in the free stream disturbances on the evolu-
tion of the laminar-turbulent transition process and at the same time provide useful hints
about how to alter the anisotropy in the free stream disturbances in order to achieve
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effective control over the transition process in a boundary layer and in this way achieve
significant drag reduction at high Reynolds numbers.

The theory of transition and breakdown to turbulence in the boundary layer can
be worked out for small statistically stationary disturbances proceeding from the basic
equations that govern the “apparent” stresses and by using (but not misusing) the closure
based on the application of the two-point correlation technique and invariant theory [19].
Conclusions emerging from the theory can be tested by direct comparisons with numeri-
cal simulations or experiments. The mechanism responsible for transition can be identi-
fied without appeal to the empirical input or ad hoc approximation. However, its descrip-
tion might not be digestible for those who reason about transition in a deterministic
fashion and exclusively in the physical space where observations usually take place: ex-
position and use of arguments and resulting deductions may therefore seem at first glance
superficial, shallow, unreasonable, confusing or entirely wrong. If the matter is analyzed
(with an open mind) in the functional space formed by the two scalar invariants which
emphasize the anisotropy in the disturbances, the problem of transition and breakdown to
turbulence under most common circumstances turns out to be the first one to attack be-
cause of'its simplicity. Specific and unconventional use of arguments then appear logical
and transparent. By arguing in the real space and the functional space it was possible to
extract the criterion for transition onset in terms of the statistical properties of the free
stream disturbances. This was the way which led us to a profound understanding and
parametrization of the chief mechanism involved in polymer drag reduction [10] and we
will follow a similar path in attacking the problem of the laminar to turbulent transition.

In a recent study, Jovanovi} and Pashtrapanska [11] used statistical techniques
for the treatment of the transition process and derived an approximate set of closed equa-
tions for the behavior of the statistical properties of small, two-component, three-dimen-
sional disturbances in a laminar boundary layer. By considering the local equilibrium to
exist between production and viscous dissipation, which forces the level of the distur-
bances in the boundary layer to be lower than that of the free stream, the transition crite-
rion was formulated in terms of a Taylor Reynolds number:

(Re ; )it 105 (1)

based on the intensity ¢ and the Taylor length-scale A of the disturbances Re; =gA/v. The
transition criterion emerges from the qualitative analysis of the dissipation rate equation,
which was restricted to be valid only in a certain range of Taylor Reynolds numbers in or-
der to prevent any possibility that the dissipation rate in the boundary layer assumes neg-
ative values, which is physically impossible. The experimental and numerical databases
for fully developed turbulent flows at low Reynolds numbers were utilized to demon-
strate the validity of the derived transition criterion for the estimation of transition onset
and breakdown to turbulence in wall-bounded flows. By extrapolating the trends in these
databases towards the derived transition criterion, the critical Reynolds numbers for
channel, pipe, and boundary layer flows were obtained in close agreement with accu-
mulated observations available from either numerical simulations or experiments.
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The two-component considerations can be extended to more realistic situations
involving statistically axisymmetric disturbances. Axisymmetry is the most common
state of the disturbances in nature, since such disturbances can satisfy constraints dictated
by the continuity equation close to the wall and also the boundary conditions in the free
stream. The statistical analysis of the dynamic equations for axisymmetric disturbances
permits the identification of the role which the anisotropy in the free stream disturbances
plays during the transition process. We intend to approach the outstanding question of
transition in a laminar boundary layer by studying the influence of the anisotropy on the
dynamics of small axisymmetric disturbances in a laminar boundary layer and in this way
learn something more fundamental about transition and breakdown to turbulence that has
been overlooked in previous studies of the subject.

The aim of this paper is to contribute further to the theoretical and more impor-
tantly to the practical understanding of the transition process using statistical techniques.
An effort is made to provide a quantitative description of laminar to turbulent transition
using stochastic tools suitable for describing random, three-dimensional flow fields. We
shall provide rational approximations for the mechanisms involved during the transition
process using the two-point correlation technique and invariant theory and finish with a
closed set of approximate equations from which it is possible to formulate the criterion
for the determination of transition onset in a flat plate boundary layer. An account is
given of an analytical investigation which demonstrates the stabilizing and destabilizing
role of the anisotropy in the disturbances on the transition process. An experimental in-
vestigation carried out in the large wind tunnel of the Lehrstuhl fiir Stromungsmechanik
(LSTM) in Erlangen in which the anisotropy in the free stream disturbances was
sufficiently high confirmed all essential features of the transition process predicted by the
developed theory. This provided support for the results emerging from the theory in re-
spect of flow control and maintenance of a stable laminar regime in a flat plate boundary
layer at very high Reynolds numbers.

Basic equations for small disturbances

Starting from the Navier-Stokes and the continuity equations of a viscous in-
compressible fluid:

2
Gy O 1O, T g3 )
ot 0x, p Ox; Ox; Ox,
ou
k- €)
0x;,

and introducing the conventional method of separating the instantaneous velocity u; and
the pressure p into the mean laminar flow and a disturbance u; and p' superimposed on it:

w, =U; +u;, p=P+p 4)
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one obtains the equations for the disturbances:

' ' ' 2 0
0w Ly, QUi Ly Y 10p ., 07U 5)
ot Ox; oxy p Ox; 0x, 0xy,
ouy
k- (6)
Oxy

In the derivation of the above equations, it is assumed that the disturbances are
much smaller than the corresponding quantities of the mean laminar flow:

uj <U,;, p'<P %)
and that it satisfies the Navier-Stokes and the continuity equations:

2
U, ou; __1or , oU; (®)
axk p@xi kaaxk

oU,
Oxy

=0 9)

By systematic manipulation of egs. (5) and (6), it is possible to obtain equations
for the “apparent” stresses — see, for example, [9 (pp. 323-324)]:

ouju’; duu,
6t ﬁxk
= —u';uj, Y —uluy, — 1L u’ja—p+u§ op _2v8u, ouj +v L (10)
6xk 8xk P axi ﬁx, axk 6xk axkaxk
Il &jj

In the above equations, one can identify two different types of unknown correla-
tions: the velocity-pressure gradient correlations /7; and the dissipation correlations ¢&;
These correlations must be expressed in terms of known quantities U; and uju/; in order to
close the resultant eq. (10) for the “apparent” stresses.

The closure problem for small axisymmetric disturbances
Let small disturbances be statistically axisymmetric so that all correlations in-

volved in eq. (10) are invariant under rotation about the common axis defined by the ar-
guments of the unit vector A [12]:
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uju’; = A5l-j +B/ll-Aj
e; = G;+DLA; (11)
I1; = ES;+FA;A;

where 4-F are scalar functions that need to be constructed from analytical considerations.
For such disturbances, it is possible to attack the closure of eq. (10) using the two-point
correlation technique developed by Chou [13] and the invariant theory introduced by
Lumley and Newman [14].

Application of the two-point correlation technique permits the separation of the
inhomogeneous effects in treatment of the unknown terms involved in eq. (10) and re-
casting of the inhomogeneous problem into the corresponding one of a statistically ho-
mogeneous flow field. Then, using invariant theory, it is possible to isolate the effects of
anisotropy in the “apparent” stresses from all other flow properties, which allows rational
construction of the closure approximations that include all physically realistic states of
axisymmetric disturbances.

Application of the two-point correlation
technique for interpretation of g

Let us first consider closure for the terms which are related to the dissipation
process:

Y-
V@ui 5MJ

Ox, Ox,

(12)

&jj

that appear in eq. (10). The most efficient procedure to treat these correlations is based on
the two-point correlation technique that was originally developed by Chou [13] and
subsequently refined by Kolovandin and Vatutin [15] and Jovanovi}, Ye and Durst [16].
However, application of this technique to the study of the dynamics of the disturbances is
complicated, tedious and very demanding for the reader. Here we shall provide only a
brief account of the parts of the subject which are relevant for the present study.

In order to separate the effect of local character from global, large-scale fluid
motion, we must first express the dissipation correlations ¢;; in a coordinate system rela-
tive to two closely separated points A and B in space as follows:

ey = v 0 i [0 (9% ) <y nim| 2| [ 22| @0
T Oxp Oxg A9Blox, Juloxg )y APBLOx, ), 0x; ! J

Expressing the partial differential operators in correlation (13) at points A and B
as functions of the position in space and the relative coordinates between these two
points:

& = () — (¥p)a (14)
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and taking the limit A — B yields [16]:

6u 8u 1
& = 6xk 8xk 4vA uju _V(AE”' ”)0 (15)

inhomogeneous  homogeneous

where the double prime (") indicates a value of the two-point correlation function at point
B, (uj)a (u)g =uju, the subscript (;) represents zero relative separation in space,
E=0,and A corresponds to the Laplace operator (A, = 0%/0x;0x;, Az = 0%/0E,05)).

Equation (15) shows thate,; is composed of an inhomogeneous part 1/4vA u/u’;
and a homogeneous partg —v(Ag uiu'; uju”),- Since the tensor £, is symmetrical, from (1 5’)
it follows that:

(Agu )0-(%%%)0 (16)

the two-point velocity correlation of second rank in the limit when & — 0 satisfies the
same relationship as in a statistically homogeneous flow field. This peculiarity of the
two-point velocity correlation, deduced only from kinematic considerations, permits us
to introduce the concept of local homogeneity for the disturbances, which leads to radical
simplifications of the dynamic equations for the dissipation correlations.

Since the inhomogeneous part of ¢; can be directly related to u’u’j we need to
consider only the homogeneous part of (15) Usmg the two-point correlation technique,
kinematic constraints, and the continuity equation, it can be shown [13, 15, 17] that the
components of the homogeneous part of (15) can be interpreted analytically in terms of
its trace &, =—V(A: uju ulu!), and the “apparent” stresses u'u’ and that ¢, is related to the
Taylor microscale A as follows:

2

g, :5vj—2 (17)

Therefore, only the equation for ¢, needs to be considered. This equation is ob-
tained by operating the dynamic equation for the two-point velocity correlation in a rela-
tive coordinate system with respect to —vA; and setting & — 0 to obtain [16]:

oU,
—V—(Agtu )0 _VUk 6—(A§u )0 _ZV(Aéukl/I”)O +
Xk

2 ) oy, 1
551 Oy 0 90X

The approximate equation for the homogeneous part of the dissipation rate in-
volves only the derivatives of two-point velocity correlations. In the derivation of this
equation, the concept of local homogeneity was utilized by applying the relationships for
the derivatives of the two-point correlation functions for zero separation (€ = 0) that are
valid in a statistically homogeneous flow field.
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The first two terms on the right-hand side of the approximate eq. (18) are the
production terms that originate from the mean velocity gradient. The firm analytical clo-
sure for these terms can be formulated only for the case of axisymmetric disturbances.
For such disturbances, Jovanovi}, Oti}, and Bradshaw [ 18] showed that the above-men-
tioned terms are equal, and their sum is given by:

2 v
ATy 2 ”V[ 6 WJ Ui _ ppfutith Ui (19
8xk 55,85,{ 0 8)6/ k ﬁxk

where k = (1/2)uju = (1/2)¢* and A is the scalar function which depends on the
anisotropy in u/ u and gﬁ , as specified in fig. 1, and will be discussed latter.

ii

Figure 1. Anisotropy invariant map
and the asymptotic forms for the
unknown correlations involved in
the equations for the “apparent”
stresses

The third term on the right-hand side of eq. (18) represents the viscous destruc-
tion of ¢;, and can be approximated using the result which holds in grid-generated turbu-
lence:

2

&
~2v2 (AAWUD) g ~ 7” (20)

and by introducing modifications which take into account the influence of the anisotropy
in the disturbances on v as shown in fig. 1 [18, 19 (pp. 51-64)].
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Construction of the closure approximations using invariant theory

We shall now apply the invariant theory developed by Lumley and Newman
[14] to formulate the closures for partition of the homogeneous part of the dissipation ten-
sor and also for the velocity-pressure gradient correlations. These authors introduced the
tensor:

a; =L _ls, 1)

and its scalar invariants:

L= ayap, 11, = agazay (22)

to quantify the anisotropy and define the limiting states of the disturbances. A cross plot
of I, vs. 111, for axisymmetric disturbances:

2
3.4
I, ==3| =[uI, 23
5.l @3)
and two-component disturbances:
I, = % +2I11,, (24)

defines the anisotropy invariant map which, according to Lumley [20], bounds all
physically realizable disturbances. This plot is shown in fig. 1 along with the asymptotic
forms for scalar functions involved in the closure proposals for the unknown correlations
in eq. (10) that can be derived for axisymmetric disturbances.

For axisymmetric disturbances, Jovanovi} and Oti} [21] showed that all sec-
ond-rank correlation tensors involved in eq. (10) are linearly aligned in terms of each
other. For such disturbances we may write:

II
e; =Aay, A=|— (25)
II,
where ¢;; is the anisotropy tensor of the homogeneous part of &;;:
= 83 ! o 26
% =530 (26)
and
IIL) = €€, IIIe = €jj€jkCri (27)

For limiting states of the axisymmetric disturbances, i. e. the two-component
isotropic state and the one-component state it holds:

I, = 1, (28)
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and therefore for these cases 4 is given by:
./{42C—iso =1 (29)
Aic=1 (30)

For very small Reynolds numbers, when Re, — 0, the dissipation and en-
ergy-containing ranges of the spectrum overlap, with little separation between the corre-
sponding length scales, and therefore we may assume that [22]:

A1, Re—0 31)

holds for arbitrary anisotropy in the disturbances.

For vanishing anisotropy in the disturbances and large Reynolds numbers, when
II, > 0 and Re;— o, we may explore the hypothesis of local isotropy in the sense sug-
gested by Kolmogorov [23] and assume that:

A—0, II,>0, and Re; —> (32)
For vanishing anisotropy in the disturbances and large Re;, the homogeneous

part of the dissipation rate ¢, may be related to the “integral” length scale L, of the en-
ergy-containing range [23, 24] by:

3
€, 201921 Re,>1 (33)
Atvery low Reynolds numbers, the relationship between A and L,can be derived
analytically to yield ([9] p. 210):
L,= l\/Eﬂ, Re; «1 (34)
A V2™ A
Using the above expression and expression (17), &, can be written as:
PE:
g, 21959v—, Re; <l (35)
L.f

Following the suggestion of Rotta [22], we combine the above asymptotic forms
for g, to obtain the interpolation equation valid for low and high Reynolds numbers:

q° q°
& ;1.959v—2 +0192 21— (36)
L 7 Ly
With expresions (17) and (36) we can express the length scale ratio A/L,in terms
of the Reynolds number:
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Li =—-00489Re ; + %\/0.00956 Rei+ 10186 37)

A

which attains a maximum value of 1.595 when Re; — 0 and vanishes for Re; — . Itis
suitable to normalize the above relation and introduce the function:

w=—* o626 (38)
1595 L, L,

which can be used to match the limiting properties of invariant functions 4 and y in the
limit II, — O for very low and very high Reynolds numbers specified in fig. 1:

A f W/qReAHO + (1 - W)-/qReA%w Ha -0 (39)
W= Re, 50 + (L= W Re, 5
Using (39), we find:
v =18 -04w

The values of 4 and v at the limiting states of the disturbances shown in fig. 1
can be matched to (40) utilizing properties of the parameter J introduced by Lumley
[20]:

J:1—9[1Ha —IHaj (41)
2
where J = 0 indicates the two-component disturbances and J= 1 corresponds to the state

of vanishing anisotropy in the disturbances. Thus we may write approximate expres-
sions for 4 and y for axisymmetric disturbances as:

1

A

{(1 ~ D Aic + Ay 1, >0 “2)

(1 - J)/qZC—iso + Jﬂiso IHa <0
(1_J)V/1C +JWiso IIIa >0 (43)
(1 - J)‘// 2—iso T Jy iso HIa <0

1

Taking relation (23), into account we obtain:

3
tedi—otm, 23 20, ) Yo -1 1, >0
2 4\\3
= (44)

x
1113
17

]

3
L4q1=9 o1, +2 (—Haj (W-1) TI, <0
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| 2.
1-9 11, - (gnaj (18 — 04%) 1, >0

3
4
v~ : : (43)
22.5 111a +3 %IIa +11-9 lua +2 gna (18 —04w) 111, <0

2 4\ 3 2 4\ 3

On the basis of above analytic considerations, we may suggest an expression for
partition of the dissipation tensor ¢, for axisymmetric disturbances as follows:

1
”_4

VA, U +g,{_(1 A)S; + “iif} (46)
q

It can be shown that a Taylor series expansion near the wall for instantaneous
disturbances leads to relations for the asymptotic behavior of the components of ¢;; in
close agreement those with obtained from expression (46) [19 (p. 71)].

We may follow the same analytical path as outlined above for the treatment of
the velocity pressure gradient correlations, which can be split into the pressure-transport
term and the pressure-strain term:

T op 5 ' G T
Hij: — tuy _lL ! ;_lip’u’j_}_ﬁ %_}__j (47)
6x 6xj p 0x; p 0x; ox; 0x;
pressure-transport pressure-strain

In wall-bounded flows, the pressure-transport contribution is usually small and
we may seek closure for the pressure-strain part by considering the equation for the aniso-
tropy in the “apparent” stresses in a statistically homogeneous field:

oa;; 1 1 1, 2¢
atl/ :q_z{Pl-j —(ay+§6yszs}+q—;]+q—f(aij—el—j) (48)
where P; = —ujuj 0U; /0x) —u';uj OU;/0x, . From this equation, we deduce the asymp-

totic behavmr of I1; as Oa;; /0t — 0 and e;; — a;;, which corresponds to the cases when the
“apparent” stresses approach the 11m1t1ng states of the axisymmetric disturbances located
at the two-component limit:

1
(H[/)ZC—iso _>aleSS +3Pss5y ij

(49)

1
(Hij)lC —>a,jP“+3P 5 - j
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Following the procedure suggested by Chou [13], the pressure-strain correla-
tions can be evaluated exactly for statistically isotropic disturbances by parameterizing
the volume integrals over two-point correlations and by utilizing only kinematic con-
straints. Tedious derivations, which were elaborated by Jovanovi} [19 ( pp. 87-89)],
yield:

3(1
M; >>| =Ps; -P; | 1, >0 (50)
503
The analytic behavior of I'l; given by (49) and (50) suggests an approximation
for I in the following form:

ij*ss ssYij

1
; =a,P +¢(3P S, — j (51)

where

3
06+36 %Ha —% @Haj |10, >0
a 1 (52)

3
06+36 1, +3 [ 21, | | 1, <o
2 4\\3

9
I

Determination of the transition criterion

Using the suggested forms for ¢;; and I1;; given by (46) and (51) and also those
for production and decay terms of the d1551pat10n rate equation given by egs. (19) and
(20), the transport equations for the evolution of the statistically axisymmetric distur-
bances can be written as:

ouju; ouju;
LU, J ~
ot @xk
=P, +a,Py+H L1p.s, 2 e ay — e85, + ot
= +a; + - — +—-Vv
ij* ss 3 ss<ij na ij 3 ) an an (53)
2 2
agh Uk ab‘h 2ﬂ8hu uk aU _h+l 0 &y (54)
ot axk k axk k 2 ﬁxk axk

If we consider transition of the flow in a flat plate boundary layer with the aim of
extracting a quantitative description of the interaction mechanism between the free
stream disturbances and the boundary layer in the way proposed by Taylor [1], then the
energy equation for the disturbances:
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2
%+Ukﬂ;Pk—sh +le (55)
ot Oxy, 2 0Ox; Ox,

which is obtained by contraction of eq. (53), immediately suggests stability towards
small disturbances if the production is balanced by the dissipation:

Piz¢g, (56)

where P, = P,/2.
The equilibrium constraint (56) reduces the energy equation to:

v (57)

which is of boundary layer character and does not allow any amplification of statistically
stationary disturbances in the boundary layer [25 (pp. 278-284)]. We conclude from eq.
(57) that the energy k cannot grow in the boundary layer above the corresponding value
of the free stream k. and that the thickness of the fluctuating layer is larger than the
boundary layer thickness.

Inserting (56) into the dissipation rate eq. (54):

2 2
aﬁ+Ukaﬂ; (2/'4_1//) g_h_{_l ai
to insure
that g, 20

and specifying that the dissipation rate is always positive, & > 0, and at the critical point
follows the energy k (as emerges from the work of Kolmogorov [23]), we deduce the
transition criterion for small, statistically stationary and neutrally stable axisymmetric
disturbances:

24-w >0 (59)

in terms of the Reynolds number Re, and the anisotropy 11, in the disturbances.

Hence, the derived transition criterion suggests the permissible magnitudes for
the intensity ¢, the length scale A, and the anisotropy II,, of disturbances that guarantee
(56) (P, =¢, withg, > 0) and therefore maintenance of the laminar flow regime in the flat
plate boundary layer. The conservative criterion (59) restricts the magnitudes of Re, and
11, and prevents negative values of ¢, from developing locally within the boundary layer.

Analysis of the transition process in wall-bounded flows
The derived transition criterion (59) permits deductions to be made on the transi-

tion Reynolds number (Re; ) in terms of the anisotropy 11, in the disturbances. It should
be remembered that the criterion must be satisfied across the entire shear layer starting
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from the wall up to the outer edge of the boundary layer where the disturbances must
match those of the free stream.

For axisymmetric disturbances, the wall is located in the anisotropy map either
at the two component isotropic limit or at the one-component limit, which correspond to
the configurations of the stresses with III, > 0 and III, < 0, respectively. Assuming that
the axisymmetry axis of the disturbances is aligned along the mean flow direction, say x;,
so that ;= (1, 0, 0), the analysis of the instantaneous fluctuations about the wall:

up = a;x, + a2x22 + ...
uy = + byx? + ..pasx, >0 (60)
Uy = Ox, + x5 + ..

involving the continuity equation leads to the conclusion that under common circum-
stances the disturbances at the wall must approach the one-component limit and that the
two-component isotropic limit can be reached at the wall only under very special circum-
stances that can be considered more as an exception than the rule.

The question of transition and breakdown to turbulence induced by small
axisymmetric disturbances which lie at the right-hand boundary of the anisotropy map
and correspond to III, > 0 was partially answered in the study by Jovanovi} and

Hillerbrand [26]. Their anal-
ysis, based on kinematic con-
siderations, shows that all co-
efficients of the Taylor series
expansion (60) must vanish
when the disturbances tend
towards the one-component
state: the disturbances at this
state must satisfy the two-
component limit and at the
same time axisymmetry at
large and small scales. The
cross-plot of the dissipation
rate at the wall vs. the aniso-
tropy of turbulence at the
wall shown in fig. 2 demon-
strates in part that the above-
-mentioned analytical deduc-

Figure _2._ Turbulent dissipation rate at the wall, tion is in agreement with the
&= v(a_f + Zf), normalized with the wall shear velocity and  extrapolated trend from all
the kinematic viscosity of the flow medium vs. the : : .
anisotropy of turbulence III, at the wall. A best-fit line numerical simulations waall
through the numerical data extrapolates fairly well the -bounded ﬂows ayallable.
expected trend as the one-component limit (I, = 2/3) is  From the considerations out-
approached lined, we may conclude that

77



THERMAL SCIENCE: Vol. 10 (2006), No. 2, pp. 63-96

the near-wall region is absolutely stable to any level of the disturbances if (I1,)wan = 2/3
and that this is a necessary but not sufficient condition that must be fulfilled for the persis-
tence of a laminar regime in a flat plate boundary layer at infinite Reynolds numbers.

Analysis of the transition criterion which can be transformed for I1I, > 0 as fol-
lows:

_2 W =0 (61)

forms the basis for the determination of the transition Reynolds number (Re; )t in terms of
the anisotropy in the free stream disturbances. The distribution of (Re; ) as a function of
11, obtained from (61) is displayed in fig. 3 and suggests that transition and breakdown to
turbulence can be avoided completely if the anisotropy in the free stream disturbances is
sufficiently large:

(IL).> 0.141 (62)

The trajectory in the invariant map, which corresponds to absolutely stable distur-
bances, i. e. those disturbances
for which the laminar regime
in a flat plate boundary layer
will persist up to very high
Reynolds number, is shown in
fig. 4. This figure also in-
cludes the results of direct nu-
merical simulations of wall-
bounded flows at different
Reynolds numbers. The trends
in the numerical results at the
wall and at the channel center-
line as Re — Re;; indicate
that these tend towards the an-
alytical result very closely and
provide support for the theo-
retical considerations.
For 111, > 0 and vanishing
anisotropy in the free stream
disturbances, we infer from
the results shown in fig. 3 that Figure 3. The transition Reynolds number (Re;)r as a
the transitional Reynolds function of the anisotropy II, in the free stream distur-
number is given by: bances
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Figure 4. Anisotropy-invariant mapping of turbulence in a channel
flow. Data, which correspond to low Reynolds number, show the trend
as Re — Re,;; towards the theoretical solution valid for small, neutrally
stable, statistically stationary axisymmetric disturbances. The shading
on the right-hand boundary of the map indicates the area occupied by
the stable disturbances: for such disturbances it is expected that the
laminar regime in a flat plate boundary layer will persist up to very high
Reynolds numbers. The shading on the left-hand boundary of the map
indicates the area occupied by the unstable disturbances: for such
disturbances it is expected that turbulence will appear in the boundary
layer at very low Reynolds numbers

(Rey)r = 13.55 as (II,). — 0 (63)

In order to translate (Re,); into (Re )y, the relation between the Taylor mi-
cro-scale A and the boundary layer thickness ¢ is required. Using the exact expression

79



THERMAL SCIENCE: Vol. 10 (2006), No. 2, pp. 63-96

A =(10)"2x,, which holds, however, only very close to the wall [16], the average value
of 1 across the boundary layer can be related to 5 as follows:
~ 1o
y 5 o (64)
Figure 5 shows that the above result together with relation (63) predicts varia-
tion of the transition Reynolds number with relative intensity of the free stream distur-
bances in fair agreement with the experimental data obtained under well-controlled labo-
ratory conditions by Spangler and Wells [5]. Detailed discussion of the relation between
theoretical deductions and other experimental results shown in fig. 5 is provided in sec-
tion Concluding remarks.
We have already indicated that the axisymmetric disturbances corresponding to

2

the configuration of the “apparent” stresses with III, < 0, which require ”12 < 2 = uj are
unlikely to appear in a flat plate boundary layer since such a form of the disturbances can-
not satisfy the continuity equation in the region very close to the (smooth) wall. However,
if the disturbances are forced to produce the above-mentioned form of the anisotropy, the

transition criterion (59) suggests that for 111, <0 it cannot be satisfied for any value of Re,

Figure 5. Comparison of the experimental data with prediction of the
effect of free-stream disturbances on boundary layer transition; e,
Spangler and Wells [5]; ...... , Schubauer and Skramstad [3]; ———— ,
prediction of transition and breakdown to turbulence for vanishing
anisotroyy in the disturbances (II, = III, = 0, Re. = 13.55) with
Z ~10V%/25 and & = 5(vx, / U,)"?

80



Jovanovié, J., et al.: Persistence of the Laminar Regime in a Flat Plate Boundary ...

and we may therefore expect that under such circumstances turbulence will appear in the
boundary layer at very low Reynolds numbers.

In a recent study, Lammers, Jovanovi}, and Durst [36] employed direct numeri-
cal simulations and succeeded in producing the anisotropy in the fluctuations corre-

sponding to I1I,<0 and u_12< g = u32 very close to the wall by placing in a plane channel
regularly spaced two-dimensional elements mounted at the wall and perpendicular to the
flow direction. Using the lattice-Boltzmann numerical algorithm, they showed the exis-
tence of turbulence at a very low Reynolds number of Re = 940 based on the centerline
velocity and full channel height. Turbulence persisted over the entire computation time,
which was sufficiently long to prove its self-maintenance. By examination of the statisti-
cal features of the flow across the anisotropy-invariant map, they found that these coin-
cide with expectations emerging from the analysis of transition and breakdown to turbu-
lence in a laminar boundary layer exposed to small, statistically stationary axisymmetric
disturbances with the streamwise intensity component lower than the intensities in the
normal and spanwise directions. Numerical experiments, carried out for different heights
and streamwise spacing between roughness elements, revealed that it was possible to
maintain turbulence at very low Reynolds numbers only if it reached the region close to
the left-hand boundary of the anisotropy-invariant map.

Experimental investigations

The preceding theoretical considerations of transition and breakdown to turbu-
lence led to the conclusion that, if the initially laminar boundary layer is exposed to
low-intensity free stream turbulence of sufficiently high anisotropy, (II,),, = 0.14 and
(I11,),, > 0, the laminar regime in the boundary layer can be maintained up to very high
Reynolds numbers.

In order to provide experimental support for the theoretical considerations,
which are based on statistical techniques, a series of experiments were carried out in a
wind tunnel in which the anisotropy in the free stream disturbances was only slightly
lower than the corresponding criterion which guarantees stability of the boundary layer
flow. However, the level of anisotropy in the free stream could only be quantified for low
wind speeds and not for the high-speed range for which transition and breakdown to tur-
bulence actually occurred in the boundary layer. In spite of this shortcoming, however,
the experimental results presented here can be considered as exploratory and reflect in
many significant details the trends inferred from the theoretical analysis.

Wind tunnel facility

The experiments were conducted in the return-type wind tunnel at the LSTM in
Erlangen. Side and top views of the tunnel are shown in fig. 6. The flows driven by two
fans with 12 blades each with the roots at a diameter of 1.12 m and the tips at a diameter of
2.0 m, yielding a maximum rpm value of 600. The fan was vibrationally isolated from the
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Figure 6. Side and top views of the return-type wind tunnel at the LSTM

rest of the tunnel. The 400 kW tunnel can be operated at a maximum speed of almost 65
m/s in the empty test section. Up to velocities of about 10 m/s there were no noticeable vi-
brations on the wind tunnel walls or the traversing system. If the velocity was increased
above 10 m/s however, a vibration of the entire tunnel could be detected.

All diffusers in the wind tunnel circuit are designed to prevent flow separation.
In the first diffuser upstream of the fan, a change from circular to rectangular cross-sec-
tion is realized. A heat exchanger is situated downstream of the second diffuser after the
fan. It has a capacity that allows a constant temperature (£0.1%) to be maintained at all
operating speeds. To eliminate flow disturbances from entering the test section, the set-
tling chamber was equipped with a honeycomb to suppress swirl components while other
flow disturbances were damped with a series of screens. The honeycomb has a depth of
200 mm and is composed of irregular hexagons with a wall thickness of 0.4 mm and an
inner width of 25 mm. The mesh size of the screens is 0.71 mm (wire diameter 0.22 mm),
yielding a blockage ratio of 57.08%. The distance between the three consecutive screens
that are located on the downstream side of the honeycomb is 550 mm, which corresponds
to more than 750 times the mesh size.
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The shape of the contraction was determined from criteria of good flow uniformity
and minimum risk of boundary layer separation near the inner corners. The smooth contrac-
tion of area ratio 5:1 is followed by a slight expansion. The contraction shape for height and
width of the tunnel that reduces the cross-section from 3.13 x 4.17 to 1.40 x1.86 m? is
shown in fig. 7. The 2.0 m long test section is 1.86 m wide and 1.4 m high at the entrance.
For experimental investigations with different measuring techniques there is a 3-D travers-
ing system available that covers the entire test section. Additionally, a turntable is installed
in the floor of the test section. The open test section provides a free stream mean velocity
that remains constant within £0.2% with a free stream turbulence intensity of <0.3%. In or-
der to provide satisfactory conditions for transition measurement, the test section was
closed provisionally yielding a low turbulence intensity and a mean velocity angularity of
+0.2°.

Figure 7. Shape of the contraction nozzle. The rectangular cross-section is reduced from
3.13 x 4.17 to 1.40 x 1.86 m2 over a distance of 3.3 m, where the form of the contraction is
different for height and width of the channel

Flat plate

The flat plate employed for transition measurements had the dimensions 1.2 x
x 1.4 m? and a thickness of 10 mm. The plate, shown in fig. 8, was mounted vertically
on the floor of the measuring section and extended over the height of the entire measur-
ing section (fig. 9). The leading edge was designed to follow the NACA 0009 profile
while the trailing edge reduces under an angle of 8° to a final thickness of 1 mm. The
plate had a polished surface with surface roughness below 0.64 um. The plate was orig-
inally used to test different measurement techniques in a laminar boundary layer dis-
turbed with a purposely induced disturbance. For this reason there was a removable in-
lay 0f 0.2 x 0.7 m? in the center of the plate. Adjusting this inlay to the smallest possible
step size results in remaining step heights between 30 and 50 pm. The dimensionless
size of these steps decreases with increasing distance from the leading edge, yielding a
maximum value of 6" = 2.7, when normalized with wall friction velocity u, and the
fluid viscosity v, at a free stream speed of 60 m/s.

83



THERMAL SCIENCE: Vol. 10 (2006), No. 2, pp. 63-96

Two rows of holes can be found on the upper half of the plate. These were origi-
nally used to fix an LDA probe. These holes were covered with tape that had a thickness
of 60 um. Two strips of tape were placed along the plate in the flow direction starting at
130 and 140 mm after the leading edge and extending until the end of the trailing edge. At
a free stream speed of 60 m/s the tape thickness corresponds to a maximum dime-
nsionless thickness of 6* = 5.1 at a distance of x = 130 mm from the leading edge. Owing
to these disturbances on the plate, it was decided to take the measurements not in the cen-
ter of the plate but at a distance of 0.4 m from the lower edge where the least influence of
the surface roughnesses was detectable (see fig. 8).

Pressure distribution

Along the plate there are two rows of pressure taps installed that allow the deter-
mination of the local pressure gradient as shown in fig. 8. By mounting the plate on a
turntable, which is located in the floor of the measuring section, the angle of attack can be
adjusted. The criteria for best adjustment of the plate were determined by the largest pos-
sible constant pressure area in the flow direction. For the present investigation the pres-
sure taps along the centerline of the plate were employed. Figure 10 shows the measured
pressure gradient along the plate. After a distance of 200 mm from the leading edge, the
deviation from a zero pressure gradient is below £0.5%.

Figure 8. Flat plate used for transition investigation
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To determine the influence of the pressure gradient on the development of the
boundary layer, the dimensionless A parameter (that can be interpreted physically as the
ratio of pressure forces to viscous forces) was calculated. It is given by:

[ 2du,,
v dx,
where 6 is the boundary layer thickness according to the Blasius solution of the boundary
layer equations. The velocity gradient dU./dx; can be expressed in terms of the measured
pressure gradient dP/dx;:

A= (65)

du., 1 dP (66)
dv, pU. dx,

Figure 9. Flat plate vertically aligned in the closed test section of
the LSTM wind tunnel

The value of the A parameter can serve as an indicator of the influence of the pres-
sure gradient on the transition Reynolds number. For an adverse pressure gradient (A < 0),
the transition Reynolds number is decreased whereas for favorable pressure gradients it is
increased. The dependence of the Reynolds number associated with instability in the
boundary layer on the A factor can be found in Schlichting [25 (p. 471)]. For A = 0, the
Reynolds number which corresponds to instability based on the free stream velocity U ,
and the displacement thickness 6,, Re 5 =U..6,/v is given by (Re 5 ); = 645. ForA = 1 it
increases to (Re 5,)i= 300 and for A =1 it decreases to (Re 5, )i — 400.
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Figure 10. Deviation from zero pressure gradient along the flat plate

Figure 11 shows the A values obtained in the present experiment. It can be seen
that they are significantly below A = 0.2 after a 200 mm distance from the leading edge.
According to the linear theory of hydrodynamic stability [25], the resulting influence of
the existing deviation from zero pressure gradient on (Re 5 ); is therefore of the order of
maximum 3%.

Figure 11. Value A as a function of downstream distance from the leading
edge of the plate
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Free stream intensity

Since the effect of free stream turbulence was expected to play an important role
in the present investigation, special emphasis was placed on its measurements in order to
examine the influence of anisotropy in the free stream disturbances on the boundary layer
transition. The intensity of turbulence in the free stream was measured using three
different hot-wire systems: DANTEC 55M, DANTEC 56C, and DANTEC Stream Line.
Owing to its high signal-to-noise ratio, most of the measurements were performed with a
DANTEC 55M system operated with a 55M 10, standard bridge which provides reliable
turbulence intensity measurements down to 0.015% of the freee stream at 10 kHz band-
width and 10 m/s [37]. In order to minimize electronic noise from the hot-wire readings,
the anemometers were carefully adjusted for optimum response by choosing appropriate
settings for gain and bandwidth of the servo amplifier. Additionally, the output from the
anemometers was low-pass filtered at 15 kHz, which was significantly higher than the
energy-containing range of the free stream disturbances.

All measurements were conducted using a standard DANTEC 55P61
X-hot-wire probe operated at an overheat ratio of 0.8. In order to verify the low-intensity
turbulence measurements obtained with the X-hot-wire probe, some control measure-
ments of the streamwise intensity component were performed using a parallel DANTEC
55P71 hot-wire probe and employing the cross-correlation technique. The output signals
from the anemometers were passed through back-up amplifiers, low-pass filtered and
finally digitized using a 16-bit A/D converter.

The hot-wires were calibrated in situ in the wind tunnel by fitting the anemome-
ter output voltage E to the effective cooling law E>= A4 + BU &;‘5 . The coeffcients 4 and B
were determined from the linear regression of the calibration data. Owing to small turbu-
lence levels encountered in the free stream, the cosine law for the effective colling veloc-
ity Uy was used for splitting the signals from the X-hot-wire into the velocity compo-
nents. For yaw calibration, the method proposed by Bradshaw [38] was employed.

By orienting the probe holder in such a way that the hot-wires were lying in the
X,-X, plane, measurements of the streamwise u; and the normal v5 components of the ve-
locity fluctuations were performed. Rotation of the probe holder by 90° placed the
hot-wires in the x,-x; plane so that the streamwise and spanwise «3 components of the ve-
locity fluctuations could be measured.

At low free stream velocities (U, = 6-7 m/s), no noticeable vibrations of the test
section walls and the traversing system were detected. For this wind speed range the free
stream turbulence level in the empty test section was approximately (u? )2 / U, =007%
in the streamwise direction and (u2)"/? JU., =(u2)"? JU., =004% in the normal and lat-
eral directions. Since turbulence of the free stream was almost axisymmetric, the above
values of the intensity components yield the following estimate for the anisotropy of tur-
bulence in the free stream:

(1) =0.11 (67)
(I11,). = 0.015 (68)
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For the above-mentioned wind speed range of the tunnel, Ye [39] and Schenck
[40] measured, apart from the turbulence intensity components, also the turbulent dissi-
pation rate of the free stream. From their measurements, which were obtained using spe-
cially designed arrays of X-hot-wire probes, one may obtain the value of the turbulent
Reynolds number (Re,),, as:

(Re;). = 0.29 (69)

Theoretical considerations of the transition process in wall-bonnded flows and
the measured data of the anisotropy of turbulence in the free stream suggest that if the ani-
sotropy is preserved at higher free stream velocities it would be possible to maintain a sta-
ble laminar regime in the boundary layer up to exceptionally high Reynolds numbers.

Transition detection and results

The arrangement of the wind tunnel test section with the model of a flat plate and
associated instrumentation employed for investigations of laminar to turbulent transition
were extensively tested by Fischer [41]. Using a standard DANTEC 55P15 boundary
layer probe he verified that the flow development along the plate follows closely the
Blasius solution of the boundary layer equations [25]. Results of Fischer's measurements
obtained for the free stream velocity U,, = 14 m/s are shown in fig. 12.

Figure 12. Velocity profiles measured in a laminar boundary layer over the flat
plate, from Fischer [41]. Plotted is the normalized velosity U/U.. vs. normalized
wall distance 71 = x,/(vx;/U.)V2 The solid line corresponds to the Blasius
solution of the boundary layer equations
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For transition detection, a single DANTEC 55P11 hot-wire probe was glued on
arazor blade of 0.4 mm thickness which was fixed to the flat surface with adhesive tape.
No calibration was necessary since the level of fluctuations and not the actual velocity
was of interest. For a laminar flow state there are only fluctuations arising from back-
ground turbulence observed in the signal and remain at a very low level. Intermittency
and hence starting transition and breakdown to turbulence are detected by a jump in the
fluctuation level.

For the first set of experiments, the surface-mounted hot-wire assembly was
placed at a distance of 1 m from the leading edge. It was placed 1.3 mm from the surface
and 0.4 m from the lower edge of the plate (see fig. 8). A central placement of the hot-wire
on the plate was not chosen because of the surface roughness at this position caused by
the tape that was used to cover existing holes in the plate. While the free stream velocity
in the wind tunnel was gradually increased from rest up to 61.6 m/s (the maximum speed
that could be obtained with the plate placed inside the test section), the hot-wire signals
were recorded with a sampling frequency of 40 kHz and stored on a PC. At each interme-
diate velocity the hot-wire signals were recorded for 1 s after the velocity had been kept
constant for about 15-20 minutes.

In a second set of experiments, the hot-wire assembly was moved along the plate
with an increasing distance from the leading edge while the free stream velocity was kept
constant at U, =55 m/s. Thus the Reynolds number was increased by moving the
hot-wire assembly further downstream. The signals were recorded at 0.3, 0.6, 0.9, 1.0,
and 1.1 mdistances from the leading edge. As in the first set of experiments, the hot-wire
traces were recorded for 1 s at a sampling frequency of 40 kHz.

Since the entire test section started to vibrate at free stream velocities above
U, =10m/s, additional measurements were performed by placing the hot-wire assembly
on one of the side walls of the tunnel outside the test section. The hot-wire assembly was
covered with a small box so that it was possible to distinguish between the influence of
flow fluctuations and system vibrations. The hot-wire traces that were recorded outside
the tunnel, and therefore at zero velocity, are shown in fig. 13. It is obvious from these
traces that the apparent noise level which originates from system vibrations increases
with increasing free stream velocity. The periodic signal that was recognized as typical
for system vibrations had a frequency of about 300 Hz.

Figure 13. Hot-wire traces recorded outside the test section in order to determine the level of
noise introduced by vibrations of the entire set-up
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Figure 14. Hot-wire traces recorded at a distance of 1 m from the leading edge for increasing
free stream velocities. The vertical and horizontal scales are the same as in fig. 13

The results from the first set of measurements with fixed downstream location of
the hot-wire assembly and increasing free stream velocities can be seen in fig. 14. With
increasing free stream velocity, the signal gradually became noisier so that the thickening
of the baseline can be attributed to the system vibration as outlined above. On top of the
signal carrying background turbulence and system vibrations, weak long-wave distur-
bances can also be seen but these show no tendency to organize in the way predicted by
the linear theory of hydromechanic stability. At a free stream velocity of U, =55 m/s the
first signs of intermittency, characterized by the appearance of isolated spikes in the sig-
nal were observed. For this free stream velocity, the intermittency factor defined as:

1
y = lim - £ I(t)dt (70)
where /(7) is the intermittency function:

()= 1L, turl?ulent (71)
0, laminar

was fairly low at y = 3.7%. Figure 14 shows that with further increase in the free stream
velocity, the number of intermittently appearing spikes in the signal increases. At the
maximum free stream velocity of U, = 61.1 m/s a turbulent state is reached at the
measuring location on the plate. From the hot-wire traces shown in fig. 14, we may
conclude that the Reynolds number which corresponds to transition and breakdown to
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turbulence can be estimated based on a free stream velocity of U, = 60 m/s, yielding a
value of (Re,)r = 4-10°. The results from the second set of measurements in which the free
stream velocity was kept constant and the hot-wire assembly was placed at various
locations along the plate are shown in fig. 15. We may note, by inspection of the hot-wire
traces, that the noise level due to the background turbulence and the system vibrations
remains constant. At a distance of 1 m from the leading edge of the plate, first evidence of
intermittency is observed with rather isolated spikes in the signal. The observed spikes
appear only in a very small time fraction of the signal, corresponding to y = 3-4%. At a
distance of 1.1 m from the leading edge, the number of spikes in the signal increased
significantly, so that the transition Reynolds number based on this value can be estimated
as the same value of (Re,)r = 4-10° that was obtained in the first set of experiments.

Figure 15. Hot-wire traces recorded at various distances from the leading edge for a fixed
free stream velocity of U.. = 55 m/s

Concluding remarks

It is a generally accepted (dogmatic) view nowadays that much is known about
early stages of transition and breakdown to turbulence from previous theoretical and ex-
perimental investigations which account for transition from stability considerations in
which amplification or damping of infinitesimal disturbances is determined from the
Orr-Sommerfeld equation in terms of the Reynolds number and the frequency or the
wavelength of the disturbances. In this respect, early theoretical work of Tollmien [42]
and Schlichting [43] together with the experimental study of Schubauer and Skramstad
[3] form the starting point and a solid basis for providing understanding of the basic
mechanism involved, so that little further investigation is required. Much of the current
work follows this line of thinking about transition and the origin of turbulence in the
boundary layer.

We do know, however, that the theory of small disturbances falls into
difficulties when an attempt is made to provide an explanation for the nature of transi-
tions in confined wall-bounded flows such as channel or pipe flows. For the latter case,
the theory leads to the surprising result that the pipe flow is stable for infinitesimal distur-
bances at all Reynolds numbers. Schlichting [25] was quite right in pointing out that:
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“We have to reconsider the relation between the theory of small dis-
turbances as to whether transition can always be said to be due to an
amplification of small disturbances”.

Anisotropy-invariant mapping of boundary layer oscillations using results de-
duced from the theory of small disturbances shown in figs. 16 and 17 reveals that the
mechanism responsible for instability and therefore for the initial phase of transition dis-
plays an anomalously complex trajectory across the anisotropy-invariant map which is
inconsistent with the trend in the behavior of turbulence as the critical Reynolds number
is approached (see fig. 4): the trajectory sweeps along the two-component state back and
forth between the one-component limit and the isotropic two-component limit. Such a
tendency in the invariant domain implies that solutions obtained from the theory of small
disturbances can explain an exceptional scenario of transition rather than the rule and as
such can be expected to be applicable in unusual circumstances only.

With respect to the analysis of the transition process in wal-bounded flows, we may
note that the energy components of the disturbances, shown in fig. 16, do not exhibit the
expected trend which matches the kinematic constrains valid for the one-component state
of the disturbances: the slopes of both of the distributions shown in fig. 16 must decrease
and vanish at the wall so that the dissipation rate also vanishes at the wall and thereby sat-

isfies constraints valid at the
one-component limit (see fig. 2).
An important issue associated
with the nature of transition in the
boundary layer is related to the
role of sound disturbances, which
accounted for approximately
90% of the total disturbance en-
ergy in the wind tunnel experi-
ments of Schubauer and Skram-
stad [3]. By conducting a similar
study in a specially designed test
facility in which noise due to
sound disturbances as well as me-
chanical vibrations could be com-
pletely eliminated, Spangler and
Wells [5] were able to show that
the effect of acoustic noise leads
to misleading evaluation and in-
Figure 16. Distributions of component energies terpretation of the experimental

uy = ("%)l/lzand "%]= (l;%l))l/z n((i)rmallized with tlllle free  data. By examination of the en-
stream velocity U. of boundary layer oscillations

according to Schlichting [42]. Points are labeled with erey sp ectra of the fiee stream
numbers in order that the position can be identified  disturbances, they concluded that
on the trajectory across the anisotropy invariant map  the results reported by Schubauer

shown in fig. 17 and Skramstad [3] on natural
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transition correspond to the stability
of laminar boundary layer exposed
to intense acoustic disturbances.
The above-discussed influence
of the acoustic noise in the free
stream disturbances may therefore
explain in part completely different
trends in the results shown in fig. 5,
which display the effect of free
stream turbulence on the transition
Reynolds number from various pub-
lished results. In contrast to the data
obtained in the presence of an in-
tense acoustic field, which show
nearly a constant value of (Re,)r for
a low turbulence level, for the exper-
imental data which correspond to
flow conditions almost without any
acoustic disturbances the transition

Reynolds number displays a contin- . ) ) ) )
uous increase with decreasing free Figure 17. Anisotropy-invariant mapping of
boundary layer oscillations on a flat plate using re-

stream turbulence level. Figure 5 sults obtained from the stability analysis towards
demonstrates that the latter data are  small disturbances displayed in fig. 16

in close agreement with predictions
obtained from the presented theoret-
ical analysis of the transition process in the boundary layer.

The results of transition measurements presented for (Re,); = 4-10°, which are
included in fig. 5, agree very well with the data of Spangler and Wells [5] and lie close to
the analytical prediction obtained for vanishing anisotropy of free stream disturbances.
This suggests that the level of free stream turbulence remained unchanged and that the
anisotropy decreased with increasing free stream velocity for the experiments described
(section Experimental investigations).

The results presented in fig. 5 show that two sets of measurements which were
obtained in the former NASA-Langley stability tunnel and at the Herman-Fottinger Insti-
tute in Berlin lie under the curve showing the predicted variation of (Re,); with the inten-
sity of free stream turbulence and therefore display a lower value of (Re,); than expected
for (II,).. = 0. We do not know the true effective level of external turbulence Tu =
=[(1/3)(u;? ++uy? +ui?)]"?/ U, and the actual level of the anisotropy in the free
stream for these experiments and can only suspect that owing to high contraction ratios of
the wind tunnels mentioned, 9:1 and 18:1 respectively, the character of the anisotropy
was (I11,,),, < 0 for which the theoretical consideration in section Analysis of the transition
process in wall-bounded flows, predict transition to occur earlier than for (I11,,),, > 0.

Reasoning similar to that presented above may be applied for the interpretation
of the transition data acquired in the ITAM wind tunnel in Novosibirsk, Russia. Figure 5
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shows that these data lie above the analytic prediction and display a higher value of
(Re, ) than expected for (I1,),, = 0. The theoretical considerations in the same section sug-
gest that this might be due to the small favorable anisotropy (III,),, > 0 present in the free
stream disturbances.
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