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The Ray leigh-Tay lor in sta bil ity of a New to nian vis cous fluid over ly ing a
Rivlin-Ericksen viscoelastic fluid is con sid ered. Upon ap pli ca tion of nor -
mal mode tech nique, the dis per sion re la tion is ob tained. As in both New to -
nian vis cous-vis cous flu ids the sys tem is sta ble in the po ten tially sta ble case
and un sta ble in the po ten tially un sta ble case, this holds for the pres ent
prob lem also. The be hav iour of growth rates with re spect to ki ne matic vis -
cos ity and ki ne matic viscoelasticity pa ram e ters are ex am ined nu mer i cally
and it is found that both ki ne matic vis cos ity and ki ne matic viscoelasticity
have sta bi liz ing ef fect.
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Introduction

The in sta bil ity of the plane in ter face sep a rat ing two New to nian flu ids when one
is ac cel er ated to wards the other or when one is superposed over the other has been stud -
ied by sev eral au thors, and Chandrasekhar [1] has given a de tailed ac count of these in ves -
ti ga tions. The in flu ence of vis cos ity on the sta bil ity of the plane in ter face sep a rat ing two
in com press ible superposed flu ids of uni form den si ties, when the whole sys tem is im -
mersed in a uni form hor i zon tal mag netic field, is stud ied by Bhatia [2]. He has car ried out 
the sta bil ity anal y sis for two flu ids of equal ki ne matic vis cos i ties and dif fer ent uni form
den si ties. A good ac count of hy dro dy namic sta bil ity prob lems has also been given by
Drazin and Reid [3], and Jo seph [4].

The flu ids have been con sid ered to be New to nian in all the above stud ies.
Sharma and Sharma [5] have stud ied the sta bil ity of the plane in ter face sep a rat ing two
viscoelastic (Oldroydian) superposed flu ids of uni form den si ties. In an other study,
Sharma [6] has stud ied the in sta bil ity of the plane in ter face be tween two Oldroydian
viscoelastic superposed con duct ing flu ids in the pres ence of a uni form mag netic field.
Fredricksen [7] has given a good re view of non-New to nian flu ids. Mol ten plas tics, pe tro -
leum oil ad di tives and whipped cream are ex am ples of in com press ible viscoelastic flu ids. 
There are many non-New to nian flu ids that can not be char ac ter ized by Oldroyd’s [8] con -
sti tu tive re la tions. The Rivlin-Ericksen elastico-vis cous fluid is one such fluid.
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Srivastava and Singh [9] have stud ied the un steady flow of a dusty elastico-vis cous
Rivlin-Ericksen fluid through chan nels of dif fer ent cross-sec tions in the pres ence of a
time de pend ent pres sure gra di ent. In an other study Garg et al. [10] have stud ied the rec ti -
lin ear os cil la tions of a sphere along its di am e ter in a con duct ing dusty Rivlin-Ericksen
fluid in the pres ence of a uni form mag netic field. Ther mal in sta bil ity in Rivlin-Ericksen
elastico-vis cous fluid in pres ence of mag netic field and ro ta tion, sep a rately, has been in -
ves ti gated by Sharma and Kumar [11, 12]. In an other study, Sharma and Kumar [13] have 
stud ied the hydromagnetic sta bil ity of two Rivlin-Ericksen elastico-vis cous superposed
con duct ing flu ids and the anal y sis has been car ried out, for two highly vis cous flu ids of
equal ki ne matic vis cos i ties and equal ki ne matic viscoelasticities.

It is this class of elastico-vis cous flu ids we are in ter ested in, par tic u larly to study
the sta bil ity of the plane in ter face be tween vis cous and viscoelastic (Rivlin-Ericksen)
flu ids.

The sta bil ity of the plane in ter face be tween vis cous (New to nian) and
viscoelastic (Rivlin-Ericksen) flu ids may find ap pli ca tions in geo phys ics, chem i cal tech -
nol ogy, and bio-me chan ics and is there fore, stud ied in the present paper.

Formulation of the problem
and perturbation equations

Con sider a static state in which an in com press ible Rivlin-Ericksen viscoelastic
fluid is ar ranged in hor i zon tal strata and the pres sure p and the den sity r are func tions of
the ver ti cal co-or di nate z only. The char ac ter of the equi lib rium of this ini tial static state
is de ter mined, as usual, by sup pos ing that the sys tem is slightly dis turbed and then by fol -
low ing its fur ther evo lu tion.

Let 
r
n (u, n, w), dr, and dp de note the per tur ba tion in fluid ve loc ity (0, 0, 0), den -

sity r and pres sure p, re spec tively. Then the linearized per tur ba tion equa tions rel e vant to
the prob lem are:
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where n m r( / )=  and ¢ = ¢n m r( / ) denote the kinematic viscosity and the kinematic
viscoelasticity of the fluid, 

r
g g( , , )0 0 -  is the acceleration due to gravity, x x y z= ( , , ) and 

D z=d d/ . Equation (3) ensures that the density of every particle remains unchanged as
we follow it with its motion.
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An a lyz ing the dis tur bances into nor mal modes, we seek so lu tions whose de -
pend ence on x, y, and t is given by:

exp(ikx x + iky y + nt) (4)

where kx, and ky are horizontal wave numbers, k k k2 2 2= +x y , and n is a complex constant.
For per tur ba tions of the form (4), eqs. (1) – (3) give:

r r n n m mnu ik p n D k u ik w Du D nD= - + + ¢ - + + + ¢x xd ( )( ) ( )( )2 2 (5)

r n r n n n n m mn ik p n D k ik w D D nD= - + + ¢ - + + + ¢y yd ( )( ) ( )( )2 2 (6)

r r r n n m mnw D p n D k w Dw D nD= - - + + ¢ - + + ¢d dg ( )( ) ( )
2 2 2 (7)

ik u ik Dwx y+ + =n 0 (8)

ndr = –wDr (9)

Elim i nat ing dp be tween eqs. (5)-(7) and us ing eqs. (8) and (9), we ob tain:
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Two uniform viscous and viscoelastic (Rivlin-Ericksen)
fluids separated by a horizontal boundary

Con sider the case of two uni form flu ids of den si ties, vis cos i ties; r2, m2 (up per
New to nian fluid) and r1, m1 (lower Rivlin-Ericksen viscoelastic fluid) sep a rated by a hor -
i zon tal bound ary at z = 0. Then, in each re gion of con stant r and con stant m, m', eq. (10)
be comes:

(D2 – k2)(D2 – q2)w = 0 (11)

where q k n n2 2= + + ¢/ ( )n n .
Since w must van ish both when z ® +4 (for the up per fluid) and z ® –4 (for the

lower fluid), the gen eral so lu tion of eq. (11) can be writ ten as:

w zkz q z
1 1 2

1 0= + <+ +A e A e ( ) (12)
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w kz q z
2 3 4

2= +- -A e A e (13)

where A1, A2, A3, and A4 are constants of integration,
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In writ ing the so lu tions (12) and (13), it is as sumed that q1 and q2 are so de fined
that their real parts are pos i tive.

Boundary conditions

The so lu tions (12) and (13) must sat isfy cer tain bound ary con di tions. Clearly,
all three com po nents of ve loc ity and tan gen tial vis cous stresses must be con tin u ous. The
con ti nu ity of Dw fol lows from eq. (8) and  the con ti nu ity of u and n. Since:
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are continuous,
ik ik n D k wx xz y yzt t m m+ = - + ¢ +( )( )2 2

is continuous across an interface between the two fluids. Hence, the boundary conditions
to be satisfied at the interface z = 0 are that:

w (15)

Dw (16)
and

( )( )m m+ ¢ +n D k w2 2 (17)

must be continuous. Integrating eq. (10) across  the interface z = 0, we obtain another
condition:
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where w0, (Dw)0 are the common values of w1, w2 and Dw1, Dw2  respectively, at z = 0.

Dispersion relation and discussion

Ap ply ing the bound ary con di tions (15)-(18) to the so lu tions (12) and (13), and
elim i nat ing the con stants A1, A2, A3, and A4 from re sult ing equa tions, we ob tain:

det(aij) = 0 (19)

where i, j = 1, 2, 3, 4 and
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Eq. (19) yields the fol low ing char ac ter is tic equa tion:
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The dis per sion re la tion (21) is quite com pli cated, as the val ues of q1 and q2 in -
volve square roots. We, there fore, make the as sump tion that the flu ids are of high vis cos -
ity and high viscoelasticity. Un der this as sump tion, we have:
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Sub sti tut ing the val ues of q1 – k and q2 – k from eqs. (22) and (23) in eq. (21), we
ob tain the dis per sion re la tion:
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As sum ing n1 = n2 = n  ([1], p. 443), as this sim pli fy ing as sump tion does not ob -
scure any of the es sen tial fea tures of the prob lem, the dis per sion re la tion (24) be comes:

a n a n n a n

n a n

1 1
2

1 1
3 2

1 1
2

2 2
1

2 1 1 4

2

¢ ¢ + + + ¢ +

+ - ¢

[ ] [ ( )]

[

k n k n

k 1 2 1 2 1 0g gk n k( )] ( )a a n a a- - - = (25)

Stable case

For the po ten tially sta ble ar range ment (a2 < a1), all the co ef fi cients of eq. (25)
are pos i tive. So, all the roots of eq. (25) are ei ther real and neg a tive or there are com plex
roots (which oc cur in pairs) with neg a tive real parts and the rest neg a tive real roots. The
sys tem is, there fore, sta ble in each case. Hence the po ten tially sta ble ar range ment re -
mains sta ble for the sta bil ity of two superposed vis cous-viscoelastic (Rivlin-Ericksen)
flu ids. This re sult is also true when the flu ids are vis cous [1].

Unstable case

For the po ten tially un sta ble ar range ment (a2 > a1), the con stant term in eq. (25)
is neg a tive. The eq. (25), there fore, al lows at least one change of sign and so has at least
one pos i tive real root. The oc cur rence of pos i tive root im plies that sys tem is un sta ble for
dis tur bances of all wave num bers. The sys tem is, there fore, un sta ble for po ten tially un -
sta ble case.
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We now ex am ine the be hav iour of growth rates with re spect to ki ne matic vis -
cos ity and ki ne matic viscoelasticity nu mer i cally. We have plot ted the growth rate n (pos -
i tive real value) ver sus the wave num ber k for sev eral val ues of the ki ne matic vis cos ity 
and the ki ne matic viscoelasticity  in fig. 1 and fig. 2, re spec tively.

In fig. 1, the growth rate n is plot ted against wave num ber k, for fixed value of 
¢ =n1  2, a1= 0.38, a2 = 0.62 and for n  = 1, 2, 5. The growth rate de creases with in crease in

ki ne matic vis cos ity show ing its sta bi liz ing ef fect on the sys tem. In fig. 2, growth rate n is
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Figure 1. The variation of the growth rate n (positive real value) with the wave number 
k for the kinematic viscosities n = 1, 2, 5 when a1 = 0.38, a2 = 0.62, and ¢n1 = 2

Figure 2. The variation of the growth rate n (positive real value) with the wave number 
k for the kinematic viscoelasticities ¢n1= 3, 5, 10 when a1 = 0.38, a2 = 0.62, and n = 2



plot ted against wave num ber for fixed n = 2, a1= 0.38, a2 = 0.62 and for  ¢ =n1  3, 5, 10. It is
seen that for the same wave num ber k, the growth rate n de creases as the ki ne matic
viscoeasticity ¢n1 in creases, show ing the sta bi liz ing char ac ter of ki ne matic viscoelas-
ticity.

Conclusions

A de tailed ac count of sta bil ity of superposed New to nian flu ids, un der vary ing
as sump tions of hy dro dy nam ics, was given by Chandrasekhar [1]. With the grow ing im -
por tance of non-New to nian flu ids in chem i cal en gi neer ing, mod ern tech nol ogy and in -
dus try, the in ves ti ga tions on such flu ids are de sir able. The Rivlin-Ericksen fluid is one
such im por tant non-New to nian (viscoelastic) fluid. The Ray leigh-Tay lor in sta bil ity of a
New to nian vis cous fluid over ly ing Rivlin-Ericksen viscoelastic fluid is con sid ered in the
pres ent pa per. Fol low ing the linearized per tur ba tion the ory and nor mal mode anal y sis,
the dis per sion re la tion is ob tained. The sta bil ity anal y sis has been car ried out, for math e -
mat i cal sim plic ity, for two highly vis cous and viscoelastic flu ids of equal ki ne matic vis -
cos i ties. As in both New to nian vis cous-vis cous flu ids, the sys tem is found to be sta ble for 
sta ble con fig u ra tion and un sta ble for un sta ble con fig u ra tion for the pres ent prob lem also.
The dis per sion re la tion is also solved nu mer i cally and it is found that both ki ne matic vis -
cos ity and ki ne matic viscoelasticity have sta bi liz ing ef fect on the growth rate.
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Nomenclature

g –  acceleration due to gravity, [m/s2]r
g –  gravity field, [m/s2]
k –  wave-number, [1/m]
kx, ky –  horizontal wave-numbers, [1/m]
n –  growth rate, [1/s]
p –  fluid pressure, [Pa]
t –  time, [s]r
v –  fluid velocity, [m/s]

Greek letters

m –  dynamic viscosity [kg/ms]
r –  density, [kg/m3]
n –  kinematic viscosity, [m2/s]
n’ –  kinematic viscoelasticity, [m2/s]
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