STABILITY OF TWO SUPERPOSED VISCOUS-VISCOELASTIC
FLUIDS

by
Pardeep KUMAR and Roshan LAL

Original scientific paper
UDC: 532.516
BIBLID: 0354-9836, 9 (2005), 2, 87-95

The Rayleigh-Taylor instability of a Newtonian viscous fluid overlying a
Riviin-Ericksen viscoelastic fluid is considered. Upon application of nor-
mal mode technique, the dispersion relation is obtained. As in both Newto-
nian viscous-viscous fluids the system is stable in the potentially stable case
and unstable in the potentially unstable case, this holds for the present
problem also. The behaviour of growth rates with respect to kinematic vis-
cosity and kinematic viscoelasticity parameters are examined numerically
and it is found that both kinematic viscosity and kinematic viscoelasticity
have stabilizing effect.
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Introduction

The instability of the plane interface separating two Newtonian fluids when one
is accelerated towards the other or when one is superposed over the other has been stud-
ied by several authors, and Chandrasekhar [1] has given a detailed account of these inves-
tigations. The influence of viscosity on the stability of the plane interface separating two
incompressible superposed fluids of uniform densities, when the whole system is im-
mersed in a uniform horizontal magnetic field, is studied by Bhatia [2]. He has carried out
the stability analysis for two fluids of equal kinematic viscosities and different uniform
densities. A good account of hydrodynamic stability problems has also been given by
Drazin and Reid [3], and Joseph [4].

The fluids have been considered to be Newtonian in all the above studies.
Sharma and Sharma [5] have studied the stability of the plane interface separating two
viscoelastic (Oldroydian) superposed fluids of uniform densities. In another study,
Sharma [6] has studied the instability of the plane interface between two Oldroydian
viscoelastic superposed conducting fluids in the presence of a uniform magnetic field.
Fredricksen [7] has given a good review of non-Newtonian fluids. Molten plastics, petro-
leum oil additives and whipped cream are examples of incompressible viscoelastic fluids.
There are many non-Newtonian fluids that cannot be characterized by Oldroyd’s [8] con-
stitutive relations. The Rivlin-Ericksen elastico-viscous fluid is one such fluid.
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Srivastava and Singh [9] have studied the unsteady flow of a dusty elastico-viscous
Rivlin-Ericksen fluid through channels of different cross-sections in the presence of a
time dependent pressure gradient. In another study Garg ez al. [10] have studied the recti-
linear oscillations of a sphere along its diameter in a conducting dusty Rivlin-Ericksen
fluid in the presence of a uniform magnetic field. Thermal instability in Rivlin-Ericksen
elastico-viscous fluid in presence of magnetic field and rotation, separately, has been in-
vestigated by Sharma and Kumar [11, 12]. In another study, Sharma and Kumar [13] have
studied the hydromagnetic stability of two Rivlin-Ericksen elastico-viscous superposed
conducting fluids and the analysis has been carried out, for two highly viscous fluids of
equal kinematic viscosities and equal kinematic viscoelasticities.

It is this class of elastico-viscous fluids we are interested in, particularly to study
the stability of the plane interface between viscous and viscoelastic (Rivlin-Ericksen)
fluids.

The stability of the plane interface between viscous (Newtonian) and
viscoelastic (Rivlin-Ericksen) fluids may find applications in geophysics, chemical tech-
nology, and bio-mechanics and is therefore, studied in the present paper.

Formulation of the problem
and perturbation equations

Consider a static state in which an incompressible Rivlin-Ericksen viscoelastic
fluid is arranged in horizontal strata and the pressure p and the density p are functions of
the vertical co-ordinate z only. The character of the equilibrium of this initial static state
is determined, as usual, by supposing that the system is slightly disturbed and then by fol-
lowing its further evolution.

Let v (u, v, w), 8p, and 6p denote the perturbation in fluid velocity (0, 0, 0), den-
sity p and pressure p, respectively. Then the linearized perturbation equations relevant to
the problem are:

ov " 0 \g2y [, odu ) ow ov
—=-Vdp+gip—p| v+V — VYV +| —+——"— || —+— 1
rr prEop p( 6IJ [dz ot dz \ ox oz )
Vv =0 (2)
0
—op=-wDp 3)
ot

where v(=u/p) and V'(=u'/ p) denote the kinematic viscosity and the kinematic
viscoelasticity of the fluid, g(0,0,—g) is the acceleration due to gravity, X =(x, y,z) and
D =d/dz. Equation (3) ensures that the density of every particle remains unchanged as
we follow it with its motion.
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Analyzing the disturbances into normal modes, we seek solutions whose de-
pendence on x, y, and ¢ is given by:

exp(iky x + ikyy + nt) 4)

where k, and k, are horizontal wave numbers, k 2= kf + k§ ,and n is a complex constant.
For perturbations of the form (4), egs. (1) — (3) give:

pnu=—ik dp+p(v+v'n)(D? —k*Yu+ (ik, w+Du)(Du+nDu'") (5)
pnv==ik 8p+p(v+v'n) (D> —k*)v+(ik ,w+Dv)(Dyu+nDy') (6)
pnw=—D3p—gbp + p(v+V'n)(D k2 Yw+2Dw(Du+nDu'") (7)
ikyu+iky,v+Dw=0 (8)

nép =-wDp ©))

Eliminating 6p between egs. (5)-(7) and using eqs. (8) and (9), we obtain:

n[D(pDw)—k? pw]—{D[p(v+V n)(D* —k*)Dw]-

gk’
—k2p(v+Vn)(D? —k*)wh+=—(Dp)w—
n
—{D[(Dpt+nDu'Y(D? +k*)w]—2k* (Du+nDu')(Dw)} = 0 (10)

Two uniform viscous and viscoelastic (Rivlin-Ericksen)
fluids separated by a horizontal boundary

Consider the case of two uniform fluids of densities, viscosities; p,, 1, (upper
Newtonian fluid) and p, £t (lower Rivlin-Ericksen viscoelastic fluid) separated by a hor-

izontal boundary at z = 0. Then, in each region of constant p and constant y, ', eq. (10)
becomes:

(D>~ I)D*—¢*w=0 (11)
where g2 =k? +n/ (v+V'n).
Since w must vanish both when z — oo (for the upper fluid) and z — — (for the

lower fluid), the general solution of eq. (11) can be written as:

w =A™ + AT (2<0) (12)
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Wy =Ase ™ + A e (13)

where A;, A,, Az, and Ay are constants of integration,

g, = /k2+ ___ and ¢,= [kP+ 2 (14)
v, +Vvin v,

In writing the solutions (12) and (13), it is assumed that ¢; and ¢, are so defined
that their real parts are positive.

Boundary conditions

The solutions (12) and (13) must satisfy certain boundary conditions. Clearly,
all three components of velocity and tangential viscous stresses must be continuous. The
continuity of Dw follows from eq. (8) and the continuity of # and v. Since:

Ty, =(2,u +2/,t’§jexz =(u+u'n)(Du+ik,w)

and P
Ty, :(2/4 +2,u'aje vz =(W+p'n)(Dv +ik ,w)

are continuous,
ik Ty, +iky Ty, =—(u+p'n)(D* +k7)w

is continuous across an interface between the two fluids. Hence, the boundary conditions
to be satisfied at the interface z = 0 are that:

w (15)
Dw (16)

and
(u+u'n)(D? +k*)w (17)

must be continuous. Integrating eq. (10) across the interface z = 0, we obtain another
condition:

1 1 .
[p2Dw, —p Dw1.—g —buzwz —k*)Dw, — +uin)(D> —kz)le} =
z=0
2 2

Z—gk—z[Pz —P1Iwg —%[ﬂz —py —npp J(Dw)g (18)
n
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where wy, (Dw), are the common values of wy, w, and Dw;, Dw, respectively, at z=0.

Dispersion relation and discussion

Applying the boundary conditions (15)-(18) to the solutions (12) and (13), and
eliminating the constants A, A,, As, and A4 from resulting equations, we obtain:

det(a;) =0 (19)
where i, j=1, 2, 3, 4 and

_ _ _ _ _n2 '
ay =ap =1 a3=ay4,==1, ay; =ay; =k, ay =qy, ay =q,, azy =2k" (u; +uin)

2, .2 2 2, .2
asy =y +pin)qy +k°), a3 ==2k"uy, azg =—p,(q5 +k~)
2 R k
! !
Ay =—0) +—+—(V,a, = Vi) —nviay), agy =—+—(Vy0, —via; —nvia, )q,,
2 n 2 n (20)
2 R k
! !
ag3 =—0) +E——(V20‘2 —ViQ —AVIO ), gy :E——(Vzaz =V —nvio g,
n n

ay,= Pr2 and Rzﬁz(az—al)
n

P1t+P2

Eq. (19) yields the following characteristic equation:

! k !
(¢ —k){—zkz(‘/zaz —via; —nvioy )[—;(Vzaz —viay —nviog ) (g, —k)ﬂlz}r
+R ~1)(v,0,)(q3 —kz)} —2k{(vla1 +nvia, (g —k)-
k ,
{—;(Vzaz —viop —nvioy )(g, —k) +0‘2}+
k ,
+(V20‘2)((I22 —kz){;(vzaz —vio —nvie ) (g, —k)+051}}+
+(q5 —k){(vlal +nvia; )gi —k?)-(R=1)+

+2k2(v2a2 —vio, —nvia, ){%(vzaz —vio, —nvie g, — k) +a }} =0 (21
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The dispersion relation (21) is quite complicated, as the values of ¢, and ¢, in-
volve square roots. We, therefore, make the assumption that the fluids are of high viscos-
ity and high viscoelasticity. Under this assumption, we have:

gk [l gl M M (22)
k2 (v+v'n) 212 (v+v'n) 2k(v+v'n)

_ n
2kv,

so that

d q,—k (23)

—k=————— an
g 2k(v, +V'n)

Substituting the values of ¢, — k and ¢, — k from egs. (22) and (23) in eq. (21), we
obtain the dispersion relation:

oV [2k2a1v{ +1]n3 +[(a, v, +a2v2)(1+4k2a1v{ )]n2 +
+[4k2v1v2aloc2 +2kz(o¢12v12 +a§v§)—
—ayvigh(o, —o ) In—gk(a, —ay ) v +a,v,) =0 (24)

Assuming v, = v, =v ([1], p. 443), as this simplifying assumption does not ob-
scure any of the essential features of the problem, the dispersion relation (24) becomes:

o,V [2k %, v 10 +[v(L+4k 2, Vi) In? +

+[2k2v2 —a,vigk(a, —a,)n—ghkvie, —ct; ) =0 (25)

Stable case

For the potentially stable arrangement (o, <a;), all the coefficients of eq. (25)
are positive. So, all the roots of eq. (25) are either real and negative or there are complex
roots (which occur in pairs) with negative real parts and the rest negative real roots. The
system is, therefore, stable in each case. Hence the potentially stable arrangement re-
mains stable for the stability of two superposed viscous-viscoelastic (Rivlin-Ericksen)
fluids. This result is also true when the fluids are viscous [1].

Unstable case

For the potentially unstable arrangement (a, > o), the constant term in eq. (25)
is negative. The eq. (25), therefore, allows at least one change of sign and so has at least
one positive real root. The occurrence of positive root implies that system is unstable for
disturbances of all wave numbers. The system is, therefore, unstable for potentially un-
stable case.
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We now examine the behaviour of growth rates with respect to kinematic vis-
cosity and kinematic viscoelasticity numerically. We have plotted the growth rate n (pos-
itive real value) versus the wave number £ for several values of the kinematic viscosity
and the kinematic viscoelasticity in fig. 1 and fig. 2, respectively.

In fig. 1, the growth rate » is plotted against wave number £, for fixed value of
vi=2,a,=0.38,0,=0.62 and for v =1, 2, 5. The growth rate decreases with increase in
kinematic viscosity showing its stabilizing effect on the system. In fig. 2, growth rate n is

10 -
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Figure 1. The variation of the growth rate n (positive real value) with the wave number
k for the kinematic viscosities v=1, 2, 5 when ; = 0.38, a, = 0.62, and v =2

+V':3

8 - 1
n

6 -

4 —

2 -

1 T T T 1 1

0 1 2 3 4 5

—_— k

Figure 2. The variation of the growth rate n (positive real value) with the wave number
k for the kinematic viscoelasticities v{= 3, 5, 10 when oy = 0.38, o, = 0.62, and v =2
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plotted against wave number for fixed v=2, a;=0.38, a2, =0.62 and for v| =3, 5, 10. Itis
seen that for the same wave number k, the growth rate n decreases as the kinematic
viscoeasticity v increases, showing the stabilizing character of kinematic viscoelas-
ticity.

Conclusions

A detailed account of stability of superposed Newtonian fluids, under varying
assumptions of hydrodynamics, was given by Chandrasekhar [1]. With the growing im-
portance of non-Newtonian fluids in chemical engineering, modern technology and in-
dustry, the investigations on such fluids are desirable. The Rivlin-Ericksen fluid is one
such important non-Newtonian (viscoelastic) fluid. The Rayleigh-Taylor instability of a
Newtonian viscous fluid overlying Rivlin-Ericksen viscoelastic fluid is considered in the
present paper. Following the linearized perturbation theory and normal mode analysis,
the dispersion relation is obtained. The stability analysis has been carried out, for mathe-
matical simplicity, for two highly viscous and viscoelastic fluids of equal kinematic vis-
cosities. As in both Newtonian viscous-viscous fluids, the system is found to be stable for
stable configuration and unstable for unstable configuration for the present problem also.
The dispersion relation is also solved numerically and it is found that both kinematic vis-
cosity and kinematic viscoelasticity have stabilizing effect on the growth rate.
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Nomenclature

acceleration due to gravity, [m/s’]
gravity field, [m/s’]
wave-number, [1/m]

horizontal wave-numbers, [1/m]
growth rate, [1/s]

fluid pressure, [Pa]

time, [s]

— fluid velocity, [m/s]

& 09109
K
I I

<D I
|

GreeRr letters

— dynamic viscosity [kg/ms]

— density, [kg/m’]

— kinematic viscosity, [m?¥/s]

— kinematic viscoelasticity, [m?/s]
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