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A new original primal-mixed finite element approach and related hexahe-
dral finite element HC: T/q for the analysis of behavior of solid bodies under
thermal loading is presented. The essential contributions of the present ap-
proach is the treatment of temperature and heat flux as fundamental vari-
ables that are simultaneously calculated, as well as capability to introduce
initial and prescribed temperature and heat flux. In order to minimize accu-
racy error and enable introductions of flux constraints, the tensorial char-
acter of the present finite element equations is fully respected. The proposed
finite element is subjected to some standard benchmark tests in order to test
convergence of the results, which enlighten the effectiveness and reliability
of the approach proposed.
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Introduction

Increased thermal efficiency and the integrity of materials in high-temperature
environments is an essential requirement in modem engineering structures in, automo-
tive, aerospace, nuclear, offshore, environmental and other industries. Nowadays, the fi-
nite element method is used regularly to obtain numerical solutions for heat transfer prob-
lems. The most common choice when using finite elements is standard Galerkin
formulation [1, 2].

In the present paper a new original finite element approach for solving steady
state heat transfer in the solid body, is presented. The main motive for the present investi-
gation is found in the lack of hexahedral (solid) finite element that is reliable [1] and ro-
bust, mainly in accordance to change of its aspect ratio. In addition, the motive is also
found in the need for the finite element procedure which treats both variables of interest,
temperature and heat flux, as fundamental ones [2]. Moreover, the motive is found in
well-known problem of connecting finite elements of different dimensionality, i.e. when
a model problem has geometrical transitions from solid to thick or thin shell/plate.

Further, the main objective of the present investigation is to show that a new reli-
able [1] mixed hexahedral (brick) finite element HC:7/g [2] can be used in the analysis of
engineering constructions of arbitrary shape, so without need for a posteriori calculation
of heat fluxes. Thus, on the contrary to the primal approach, present finite element ap-
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proach has two fundamental variables, temperature and heat flux, which are calculated si-
multaneously.

Consequently, the main goal of the present investigation is to validate the use of
the new finite element HC:7/g in steady state heat analysis of isotropic, orthotropic or
multi-material solid bodies under different thermal or mechanical loading scenarios.

The future investigation is oriented toward implementation of the present ap-
proach in the existing in-house primal-mixed elasticity code [5] for more accurate deter-
mination of thermal stresses, where no consistency problem will occur in calculation of
thermal and mechanical deformations [3, 4].

Weak form of the steady state heat field equations

Let us consider a body which occupies some closed and bounded domain €2 of
the Euclidian space £ (n =1, 2, 3). The inner part of €2 is denoted by €2, and its boundary
by 062, 202 =2 . The boundary is subdivided into four parts: 02, A2, €2, and 0,
which are: part of the boundary per temperature, heat flux, heat flux due to the convec-
tion, and heat flux due to the radiation, respectively, such that a0, 002, U Q. L 02, <
0€2. The state of the body is described by temperature 7"and heat flux vector ¢. Let us con-
sider a complete system of field equations for steady-state heat transfer in the strong
form, where:

divg +f=0 in Q (1)

q=-kvVT in Q )

are respectively, the equation of thermal balance that states that the divergence of the heat
flux is equal to the internal heat source f, and Fourier’s law of heat conduction, which
assumes that the heat flux is linearly related to the negative gradient of the temperature,
where k is second order tensor of thermal conductivity, which is heat transfer property of
an general orthotropic material. If the material is homogeneous and isotropic, the tensor
k will degenerate to simple scalar value £, i. e. thermal conductivity coefficient.
Nevertheless, the present approach considers full tensor of thermal conductivity.
These two equations are subjected to the following boundary conditions:

T=T on 002 (3)
q=q,=h on 002, 4)
q=9qc=h(T—T,) on 0, 5)
q=q,=hcA(T*-T,') on 00, (6)

which are, boundary conditions per temperature (3) and per heat flux (4)-(6). More
clearly, boundary conditions due to the prescribed heat flux are given by the expression

112



Mijuca, D. M., Ziberna A. M., Medjo B. I.: A New Multifield Finite Element Method in ...

(4). Further, boundary conditions due to the convection are given by the expression (5),
where /. is the convective coefficient and 7, is the temperature of the surrounding
medium. Finally, boundary conditions due to the radiation (6) are not presently
considered.

Let us suppose that boundary condition (3) is essential, and hence exactly satis-
fied by the trial functions of a problem. Then we need to consider only the weak forms of
the egs. (1) and (2). Using the Galerkin procedure, one can seek the weak solution of eq.
(1):

[(divg + f)0dQ2 =0 (7)
Q

where 6 denotes test functions in the complete space of the interpolation function, which
are taken from the Hilbert space L, of all real measurable square integral scalar functions:

g%d0Q< o, with the inner product (h,g) = |ohgd(2 and the norm defined by ||g|| =(g,2)
f%r all h, g € L,(Q).

Further, we will consider the weak form of inverted constitutive eq. (2), where
vector @ is the test function taken from the space of all measurable square integrable vec-
tor fields:

[(k™'q+VT)Qd2=0 (8)
o

Weak formulation of the mixed problem

Simple summation of eqgs. (7) and (8) gives us the expression which represents
asymmetric weak formulation of the mixed problem.
Find {7, q}e H'(Q)x H(div) satisfying boundary conditions and

[ (k7'q+VT)QdQ = [(divg + f)0dQ
for all “ “
0.0} €L, (£2)x Ly (£2) ©))

In these expressions, H(div) is the space of all vector fields which are square
1ntegrable and have square integrable divergence with the norm defined by
||g|| —j_Q[(dlvg) +g 21dQ for all g e H(div).

However, it is a common opinion that asymmetric formulations are impractical
from the computational point of view. Integrating by parts and applying divergence theo-
rem on the first term on the right side of eq. (9) yields symmetric weak form of a mixed
problem, where H' is the space of all scalar ﬁelds which are square integrable and have
square integrable gradients, with the norm ||g|| =[pl(g’ )? +g21dQ for all ge H'(€2):

Find {T, ¢} € H'(Q)xLy(Q) such 7|, =T that and
T
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[qk 'QdQ+ [VT-QdQ = [qVOdQ - [0fdQ - [6¢,d0Q— [¢.0d0Q  (10)
Q Q0 Q 0 20 o0,

q

for all {0, Q} € H'(Q)xL,(Q) such that 9|aQ =0.
T

Finite element approximation of the field equations

Let C), be the partitioning of the domain 2 into elements €2, and let us define fi-
nite element subspaces for the temperature scalar 7, the heat flux vector ¢ and the appro-
priate test (weight) functions, respectively as:

Th:{TeHl(Q):T|m =T, T=T"P,(Q,), ¥Q,cC,}
T
@h={OeH1(Q):0|aQ =0, 0=0" P, (Q), VQ,eC,}
T
_ 1 . _
Oy =lgH (:q-n|,, =h q-n
9, =10 eH (Q):Q-n

o =h(T=Ty), q=4"V,(2;), VQ; eC,}

=0, 0=0"V) (2), vQ;eC;; (1D

00,00,

In these expressions 7 and ¢* are nodal values of the temperature scalar 7 and
flux vector ¢, respectively. Accordingly, P; and V; are corresponding values of the inter-
polation (local base) functions connecting temperatures and fluxes at an arbitrary point in
Q) (the body of an element), and the nodal values of these quantities. The complete anal-
ogy holds for the temperature and flux weight functions 8 and Q . Please note that, as an
essentially new approach, trial and test base functions for approximation of fluxes are
presently chosen from the smaller, but continuous space H', that will provide the continu-
ous heat flux picture over the domain of the model problem.

It should be noted that if present finite element approach is applied on model
problems with abrupt material changes (multimaterials), where local heat flux disconti-
nuity exists, the present rule (that local flux approximation functions are from continu-
ous function space H') is too hard. It is left for future investigation to relax stress continu-
ity on the interface surface(s) only, where fluxes will be chosen from space L? as in eq.
(10). Nevertheless, it will be shown that this local violation does not affect expected tar-
get results in the vicinity or on the material interface.

Numerical implementation

By analogy with finite element approach in elasticity [5], after discretization of
the starting problem using finite element method, present scheme can be written as a sys-
tem of linear equations of order n = n, + ny, where nyis the number of temperature degrees
of freedom, while 7, is the number of flux degrees of freedom, in matrix form:

A, BL |la,] |-4,, -Bl |4 0
v v _ P P p i (12)
B v -D w TV _BVp D vp Tp FP +HP _KP
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In this expression, unknown (variable) and known (initial, prescribed) values of
the fluxes and temperatures, denoted by the indices v and p respectively, are decomposed.

The nodal flux (¢! ) and temperature (7% ) components are consecutively or-
dered in the column matrices ¢ and T respectively. The homogeneous and nonhomoge-
nous essential boundary conditions per temperatures 7, and fluxes g, are introduced as
contribution to the right-hand side of the expression (12).

The members of the entry matrices A, B, and D, and the column matrices F, H,
and K in expression (12), are respectively:

-1_b
ALer :ng g(aL)pVLkabg(M)rVMdQe; BLpM :Z(g gEIL)pVLPM,ad‘Qe
e e

Diy =% [ hePPy0Q.; Fy =% [Py fdQ, (13)
€00, eQ,
Hy =Y [ PyhdoQ,,; Ky =% [PyhT,doQ,
eaghe e 5ch

In the above expressions, the Euclidian shifting operator g(“L) » 1s given by
gy, =0,;8° 02" 10&°) (027 10y )Py where, 2((i, j, k, [ =1, 2, 3) is global Cartesian
coordinate system of reference. Further, y&'(r, s, 1 =1, 2, 3) is coordinate system at each
global node L, per heat flux. Further, local natural (convective) coordinate systems per fi-
nite elements are denoted by E9%a, b, ¢, d =1, 2, 3), while, g*” and g are components
of the contravariant fundamental metric tensors, the first one with respect to natural coor-
dinate system of a finite element £¢, and the second to )" at global node L . Furthermore,
Pyr.=0Py,/05°. Since tensorial character is fully respected, one can easily choose appro-
priate coordinate system at each global node, useful for prescribing of fluxes and/or tem-
peratures, or results interpretation.

It should be noted that matrix form expression (12) represents a new original
form of resulting system of linear equations in the steady state heat analysis. Especially,
because contribution from convective heat transfer represented by matrix entry is natu-
rally assembled to specified position in expression (12) connected to temperature degrees
of freedom.

Finite element HC8/27

Mixed finite element per temperature and flux, HC8/(9-27), is shown in fig. 1.
Its acronym is taken from [5], where the first letter H stands for hexahedral element geo-
metrical shape, while the letter C indicates the use of continuous approximation func-
tions.

Temperature and heat flux fields are approximated at least by eight tri-linear
shape functions connected to eight corner nodes (elements HC8/9, HC8/21, and
HC8/27), or at least by twenty tri-quadratic shape functions connected to eight corner
nodes and twelve mid-side nodes (elements HC20/21 and HC20/27). In addition, stabili-
zation of finite element is achieved by full or partial hierarchic interpolation of heat flux.
In case of the element HC8/(9-27) shape functions for flux are one order higher than for
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temperature, while for HC20/(21-27) they
are both quadratic. Thus, for element
HC20/27 twenty-seven flux nodes are avail-
able to accommodate full triquadratic ex-
pansion in natural coordinates &% (a =1, 2,
3). Consequently, following multifield com-
binations of temperature and flux nodes are
available to user: HC8/9, HC8/21, HCS8/27,
HC20/21, and HC20/27. Moreover, per each
corner node there is maximum four degrees
of freedom n = 4 (one temperature degree of
freedom n,= 1 and three degrees of freedom
per heat flux n, = 3). For element
HC20/(21-27) twelve mid-side nodes can
also have degrees of freedom for flux and
temperature. At hierarchical nodes there are only degrees of freedom connected to heat
flux.

Figure 1. Finite element HC8/(9-27)

Solution of the resulting system of linear equations

In the present paper, the method based on multifrontal approach, one of the main
categories of direct methods for solving of the resulting system of linear equations, is
used. The core of that method is taken from the code MA47 [6], representing a version of
sparse Gaussian elimination which is implemented using multifrontal method.

Low order tests

In order to check necessary and sufficient conditions for convergence, low order
tests are traditionally the first steps in the validation process of each new finite element.
In addition, some authors considered these tests as tools for assessment of robustness of
finite element algorithms. In the present paper, necessary [10] and sufficient conditions
[11, 12] solvability tests are considered.

Necessary conditions for solvability

It is considered that single finite element passes solvability test if number of its
flux degrees of freedom n, is greater than number of temperature degrees of freedom ny.
This test is known [10] as single element patch test. In case of the finite element HC8/27
we have ny= 8 and n, = 81. So evidently, it passes the present test. In addition, its simpler

configurations, HC8/8 and HC8/9, pass the present test also, because ancg/ $-24 and
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nH¥9 Z27 that are again greater than number of the temperature degrees of freedom

nr= 8.

Further, finite element HC20/20, HC20/21 and HC20/27, have n,'“*"*" =60,
nHC2021 63 and nH2727 =81 flux degrees of freedom, respectively. So, for these finite
elements, the number of heat flux degrees of freedom is evidently greater than the num-
ber of the temperature degrees of freedom n,=20. Consequently, for those elements nec-
essary conditions for solvability are satisfied also.

Sufficient conditions for solvability
FEigenvalue analysis

In order to check if one finite element is sensitive to the locking phenomena, that
is, to illustrate that element is free of spurious zero-energy modes (mechanisms), an
eigenvalue analysis of single finite element is usually performed [12]. This test is also
known as sufficient conditions for solvability test. It should be noted that presently one
finite element free of boundary conditions, passes sufficient solvability test if number of
zero eigenvalues of the relevant system matrix in eq. (12) is equal to one, from the reason
that primal variable is scalar function.

For example, for finite element HC8/27, number of negative eigenvalues corre-
sponds to number of temperature degrees of freedom n,= 8 x1 = 8§, while number of posi-
tive eigenvalues corresponds to number of flux degrees of freedom n, =27 x3 = 81.

In tabs. 1 and 2, calculated eigenvalues are sorted in increasing order. All
eigenvalues connected to the temperature degrees of freedom are reported. On the other

Table 1. Eigenvalues for different one finite element configurations HC8/8, HC8/9, and HC8/27

Mode (dof) HC8/8 HC8/9 HC8/27
1 —1.951941E-01 —2.290541E-01 —3.303563E-01
2 ~1.951941E-01 —2.290541E-01 —3.303563E-01
3 —1.951941E-01 —2.290541E-01 —3.303563E-01
4 Temp —9.884506E-02 —9.884506E-02 —1.560596E-01
5 —9.884506E-02 —9.884506E-02 —1.560596E-01
6 —9.884506E-02 —9.884506E-02 —1.560596E-01
7 —4.166667E-02 —4.166667E-02 —5.384102E-02
8 Zero 0 0 0
9 4.629630E-03 4.629630E-03 9.093757E-05
10-31
32 3.201941E-01
33-35 Flux
36 4.685373E-01
37-89
90 1.290335E+00
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hand, only the smallest and largest eigenvalue connected to flux degrees of freedom are
reported here. We may also see that finite elements HC8/8, HC8/9 pass the present test,
with number of negative eigenvalues equal to number of temperature degrees of freedom
alll{((ij B(Q)sitive eigenvalues equal to number of flux degrees of freedom, i. e. n fcg/ $ —24and
n =27.

Results of the present test for finite elements, HC20/20, HC20/21, and HC20/27
are analogous, i. e. all of them pass the test, where number of negative eigenvalues is
equal to 20, and the number of positive eigenvalues is equal to 60, 63, and 81, respec-
tively.

Table 2. Eigenvalues for different one finite element configurations HC20/20, HC20/21,
and HC20/27

[ Mo@on [ [ mco [ monr [ mcaon7 |

1 —5.274123E-01 —5.628892E-01 —6.405245E-01
2 —5.274123E-01 —5.628892E-01 —6.405245E-01
3 ~5.274123E-01 ~5.628892E-01 —6.405245E-01
4 —4.693950E-01 —4.693950E-01 —5.465386E-01
5 —2.822907E-01 —2.822907E-01 —3.245214E-01
6 —2.822907E-01 ~2.822907E-01 —3.245214E-01
7 ~1.391434E-01 —1.391434E-01 —1.583908E-01
8 —1.391434E-01 —1.391434E-01 —1.583908E-01
9 —1.391434E-01 —1.391434E-01 —1.583908E-01
10 Temp —8.229060E-02 —8.229060E-02 —8.810544E-02
11 —8.229060E-02 —8.229060E-02 —8.810544E-02
12 —8.229060E-02 —8.229060E-02 —8.810544E-02
13 —4.450799E-02 —4.649999E-02 —4.732059E-02
14 —4.450799E-02 —4.649999E-02 —4.732059E-02
15 —4.450799E-02 —4.649999E-02 —4.732059E-02
16 —4.117091E-02 —4.117092E-02 —4.117092E-02
17 —2.614909E-02 —2.614909E-02 —2.639023E-02
18 —2.614909E-02 —2.614909E-02 —2.639023E-02
19 —2.614909E-02 —2.614909E-02 —2.639023E-02
21 2.232664E-03 2.061110E-03 1.408515E-04

22-79

80 3.718892E-01

81-83 Flux

84 1.191550E+00

85-100

101 1.645062E+00
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High-order tests
The mathematical convergence requirements

As the finite element mesh is refined, solution of discrete problem should ap-
proach to the analytical solution of the mathematical model, i. e. to converge. The con-
vergence requirements for shape functions of an isoparametric element can be grouped
into three categories, that is: completeness, compatibility and stability [1, 2].Conse-
quently, we may say that consistency and stability imply convergence.

Completeness criterion requires that elements must have enough approximation
power to capture the analytical solution in the limit of a mesh refinement process. There-
fore, the finite element approximation functions must be of certain polynomial order en-
suring that all integrals in the corresponding weak formulation have measurable values.
Specifically, if m is variational index calculated as the highest spatial derivative order
that appears in the energy functional of the relevant boundary value problem, than the el-
ement base approximation functions must represent exactly all polynomial terms in or-
der m<1 in element coordinate system. A set of shape functions that satisfies this condi-
tion is called m-complete.

Further, compatibility criterion requires that finite element shape functions
should provide temperature continuity between elements, in order to provide that no arti-
ficial temperature gaps will appear during heat transfer. As the mesh is refined, such gaps
could multiply and may absorb or release spurious energy. So, patch trial functions must
be C"! continuous between interconnected elements, and C” piecewise differentiable in-
side each element.

Nevertheless, completeness and compatibility are two aspects of so-called con-
sistency condition between mathematical and discrete models. Consequently, a finite ele-
ment model that passes both completeness and continuity requirements is called consis-
tent.

Further, if considered finite element is stable, non-physical zero-energy modes
in finite element model problem will be prevented. The overall stability of mixed formu-
lations is provided if two necessary conditions for stability are fulfilled i. e., the first con-
dition represented by the ellipticity on the kernel condition and second condition repre-
sented by the inf-sup condition [1, 2].

It should be noted that satisfaction of the completeness criterion is necessary for
convergence of the finite element solutions, while violating other two criterions does not
necessary mean that solution will not converge.

Consistency condition for finite element HC(8-20)/(9-27)

Presently, variational indices for temperature variable field and flux variable
field are both m = 1. Further, in the present formulation, test and trial temperature and
heat flux approximation functions are chosen to be from the sub-space H'((2), as it can be
seen from expression (11). Consequently, they are chosen to have C? continuity, i. e. they
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are continuous, with finite first derivatives. Accordingly, the completeness and compati-
bility requirements for both fields are satisfied in the present case.

Nevertheless, it should be noted that from the reason that flux derivatives do not
appear in the present formulation (10), the over-constrained continuity requirement on
the heat flux’s trial and test shape functions may be relaxed to be from sub-space L? i. e.
discontinuous, between the finite elements if it is physically justified, as in the case of the
abrupt material changes (on the interface of two materials).

First stability condition

The mixed formulation that we are considering can be written in the form :

B(T, q), 6, )] = F6, Q) (14)

where

B[(T, q),(6, Q)]:[[)qk -l :Qd(2+[j2VT-QdQ—[£qV9dQ (15)

for (T, q),(0, Q)eH' (2)x L, (Q)"

ie.

B((T, @),0. 9)] = alg. @) +b(T, Q) - b®, ¢) (16)

A major difficulty arises when we try to prove if the chosen finite element spaces
yield stable approximations. The first stability condition stability can be proved if the
bilinear form B[(7, q), (6, Q)] is coercive.

Note that in this case, although B is not coercive, at least « is, i. e. the inequality
a(Q,0) Za”Q" for all Q € L, holds for some positive constant c.

However, the condition that the @ form is coercive is not satisfied for most mixed
methods. It turns out that one can get by with a weaker condition than coercivity of a on
L,, namely coercivity on a particular subspace H'. More precisely, suppose that a posi-
tive constant o, exists, such that

a(z,z)Zochnznz for all zeZ,, Z, ={ze9,|b(v,2)=0 for all ve®,} (17)

where &, and @, are flux and temperature test approximation functions respectively. It
should be noted that presently, test and trial flux local approximation functions are from
continuous finite element subspace 9, = (H')". In fact, any choice of subspaces 9;, = (H')"
yields stable approximation [2], from the reason that the corresponding bilinear form is
quadratic.

In addition, in the analysis of the present mixed formulation, « is positive defi-
nite, symmetric and bounded, and eq. (17) is satisfied for all Q€9,. Consequently, in the
present problem a is coercive.
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Hence, the first stability condition of the present finite element family is satis-
fied a priori.

Second stability condition
For the present finite element, the second stability condition is satisfied if value

v;,, following from LBB (Ladyzhenskaya, Babuska, Brezzi) condition (see [13], p. 76, eq.
3.22), remains bounded above zero for the meshes of increasing density:

: b0y, Ty)
<yy= inf T 18
V=7h TISH]QG(H‘)” Qh””Th” (18)
where
b(Oy. T, ):Z!szh VT,d2, (19)
e ||2 =2 !{Qh -0,dQ, (20)
||Th||2=Z(IJVThVTthe 1)

In addition, condition (18) ensures solvability and optimality of the finite ele-
ment solution [11]. It should be emphasized also, that boundary conditions per tempera-
ture do not enter the present test.

Because verification of the condition like (18) involves an infinite number of
meshes, it can not be performed analytically. Therefore, numerical inf-sup [1] test should
be performed for a limited number of meshes of increasing refinement. Consequently, in
the present case, numerical inf-sup test is represented by generalized eigenvalue prob-
lem, in matrix notation given by:

B,A'Bl x=AK,x (22)

where B and 4 are matrix entries in expression (12). Further, matrix K is the system
matrix from the corresponding standard primal steady state heat finite element method,
where entries are given by:
d
Ky =X [ Pp k™ Py qdQ, (23)
e Qe

The square root of the smallest eigenvalue of the problem (22), that is (A ,;,) "2, is
equal to the inf-sup value ¥, in condition (18). If the inf-sup values, for chosen sequence
of finite element meshes, do not show decrease toward zero (meaning thatA ,,;, values sta-
bilize at some positive level) it can be said that the element passes the inf-sup test. It
should be noted that decreasing of the inf-sup values on log-log diagram would be seen as
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a curve with moderate or excessive slope. This approach was already used in [14] for test-
ing the stability of quadrilateral finite elements QC4/5 and QC4/9, and in [5, 15] for test-
ing the stability of the hexahedral finite element HC8/9 in linear elasticity. Nevertheless,
the investigation whether the present finite elements passes numerical inf-sup test (22) is
left for future report.

Numerical experiments

Although some exact solutions are available in standard references, there are
few three-dimensional cases available. In the present section proposed method is tested
on the several standard benchmark examples in steady state heat analysis. Size of ele-
ments is chosen to achieve reasonable engineering accuracy with reasonable computing
times. Only those results for which the theoretical solution is known are given, while
other results available from the analyses are not reported here.

Cooling of the still rod

A nickel-steel rod of length /=0.1 and radius »=0.01 [9] initially held at a uni-
form temperature of 200 °C is suddenly exposed to the environmental temperature 7, =
=30 °C. One end of the nickel-steel rod is heated to the temperature of 7=200 °C. The
other end is insulated, so there are no any boundary conditions per temperature or heat
flux. The material thermal conductivity is 12 W/m°C, while the convective heat trans-
fer coefficient is 22.11 W/m?°C.

Present solutions are obtained using hexahedral meshes HC20/21 of increasing
refinement along the rod longitudinal axe (z—axe), while refinement x-y in plane is
shown in fig. 2. The relative absolute error, for the results obtained with several present
finite element configuration, in accordance to 1-D are shown in fig. 3.

Figure 2. Cooling of the still rod model problem
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From the fig. 3 we can see excellent agreement with theoretical results obtained
by one-dimensional theory, which is less than 0.8% in error for all monitored rod’s sec-
tions.

—_

o
~
!

1 —Vv— HC20/21 NEL =60
—/x— HC20/21 NEL = 120
{ —0— HC20/21 NEL = 240

Relative absolute error [%)]

0.01 T T T T T T T
0.02 0.04 0.06 0.08 0.10
z-coordinate along the rod

Figure 3. Solid billet: the relative absolute error in
accordance to 1-D theory

Solid steel billet

In the present example steady state heat transfer in a solid steel billet [7], shown
in fig. 4, is analyzed. Fixed temperatures are applied on the two end surfaces, and forced
convention on the other faces. The target value is temperature at the point A, that is 7" =
32.8 °C. The material thermal conductivity is 50 W/m°C, while the heat transfer coeffi-
cient is 100 W/m?°C. Ambient bulk fluid temperature is 0 °C.

Convection ~7 T~ 100°C

Figure 4. Solid \ o4 m
steel billet model
problem

Location of

0.6 m target value

~  Summetry

02
—
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The model is discretized by increasing sequence of the refinement factors N =4,
6,8,10,12,and 14 and L =3, 4, 5, 6, 7, and 8, where distribution of finite elements is
given by the pattern N x 3N x L along X, y and, z axes, respectively, in order to check the
convergence of the finite element solutions.

From the temperature results at the target point with coordinates (0.2, 3, 0.0), we
may see that both finite element approaches, present HC8/9 and primal HEXAS, con-
verge uniformly to the same value which is less than 1% lower than target value (fig. 5).

37 T T T
T[°C] 3 _4 =
1 S 8 A
36 2 i_*a
35 1
; g5 ;
g % 1 B ._H,_,.D-":' ]
34 E\ 100 700 10000 |
" Number of elements |
3 T Target
ap - —— HC8/9 3
—— Straus7 HEXA8
31 T T .
0 1000 2000 3000 4000 5000

Number of elements

Figure 5. Solid billet: the convergence of temperature at
target point

Nevertheless, the main difference is in calculation of heat flux field. In the pri-
mal approach (Straus7) it is calculated a posteriori that results with abnormal disconti-
nuity along element interfaces (see fig. 6 on the left), which raise the need for the use of
some recovery or smoothing technique of the heat flux (dual) variable [8]. On the other
hand, presently heat flux field is calculated as the fundamental variable and it is continu-
ous as it is expected to be (see fig. 6 on the right).

HEXA8: ¢ [JismZ] HC8/9: g¥ [Jism?]

17215.15 13074.15
D 6328.37 D 4720.54
—4558.42 —3633.08
—15445.21 ~11936.69
—26332.00 —20340.31
-a7218.79 —28693.92 "f‘_'f'-

Figure 6. Heat flux ¢’ calculated by the primal (left) and present mixed approach (right)
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Hollow cylinder with fixed temperature BC's

In this example heat transfer through a hollow cylinder is analyzed. Fixed tem-
perature 7= 20 °C is prescribed on the outer surface of the cylinder, and convection oc-
curs on the inner surface. Fluid inside the cylinder is air, convection coefficient between
inner wall of the cylinder and air is 30 W/m°C , and the air temperature is 7= 100 °C.

Finite element model is three-dimensional section of the hollow cylinder with
one layer of HC20/21 elements along the axis of the cylinder. Only one quarter of the
model is analyzed due to the symmetry. Target value is the temperature on the inner sur-
face [17]. The convergence of the results is shown in the fig. 7. In the same figure one can
also see the size of the relative error compared to the exact theoretical solution.

67.0 7 3.0
T[°C] { Target value )
66.5 F - eaag-- 2570
] -
66.0 - -2.09
z o £
65.5 A F1 .5%
] o
65.0 1 1.0
645 0.5
X\ . 64.0 T T T T T T 0.0
LI 0 20 40 60 80 100 120 140
// Number of elements
zZ
Figure 7. Hollow cylinder Figure 8. Hollow cylinder: Temperature result at

target point and relative errors

From the results reported in fig. 8, we may notice that present finite element
scheme instantly converge to the target result.

Hollow sphere with two materials and convective BC's

Steady state heat transfer through a sphere made of two materials is analyzed
[18]. The inner radius is of 0.30 m, the interfacial radius is 0.35 m, and outer radius is
0.37 m. The sphere has convection boundary conditions, both on the inner and outer sur-
face. On the outer surface, convection coefficient is 200 W/m2°C, and on the inner sur-
face its value is 150 W/m?°C. Fluid inside and outside of the sphere is air. Its temperature
inside the sphere is T =70 °C and outside is T =—9 °C. Thermal conductivities of the ma-
terials are 40 W/m°C (inner sphere) and 20 W/m°C (outer sphere). In this example the in-
ner (A), material boundary (B), and outer surface (C) temperatures are determined.
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Only 1/8 of the sphere (as shown in fig. 9) has been analyzed, due to the symme-
try. Finite element HC 20/21 has been used for this model, because it utilizes tri-quadratic
approximation of geometry, temperature and heat flux. The four finite element meshes
considered are shown in fig. 9.

Figure 9. Two-material hollow sphere

Results for temperature values on three radii of the presently considered sphere
namely at nodes A, B, and C, are shown in the tab. 3, as well as figs. 10 and 11.

Table 3. Temperature values on three radii of the sphere

o [ w | e [ ot

6 25.03 17.66 12.93
60 24.95 17.7 13.03
189 24.9 17.66 12.99
432 24.87 17.63 12.97

Target 25.06 17.84 13.16

From the results reported in the figs. 10 and 11, we may see that present solu-
tions converges to some new target values that are a little bit lower in accordance to the
given ones [18]. Nevertheless, for all considered target points relative error per finite ele-
ment mesh in accordance to the target result, is less than 1.75%.
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Figure 10. Convergence of the temperature  Figure 11. Relative errors of calculated
values on three radii of the sphere temperature values compared to the exact
solutions

Conclusion

In the present text, mathematical aspect of convergence of the proposed finite el-
ement family HC(8-20)/(9-27), are analyzed. It is proven that present finite element fam-
ily is consistent, solvable, and passes first stability condition. Further, from the standard
benchmark examples in steady state heat analysis of solid bodies solved by the present fi-
nite element family, we may preliminary conclude that it converges regardless of the ge-
ometry, abrupt material changes, or distortion of the finite element (e. g. excessive thick-
ness ratio). Moreover, we may emphasize that one of the main potentials of the present
hexahedral finite element is in overcoming of well-known transition problem of connect-
ing finite elements of different types and dimensions.

Consequently, we may end with conclusion that present finite element approach
gives us greater design freedom than standard primal approaches that use different kind
of finite elements: solid, plate/shell, beam. It should be noted that temperature results ob-
tained by the present approach are a little bit lower than available target results. In addi-
tion, present finite element approach will be used in connection with the existing
in-house software [5], based on the original reliable mixed displacement/stress finite ele-
ment approach in elastic analysis, which is new original weakly coupled mixed steady
state heat / thermoelasticity finite element approach in literature, with unique design
characteristics.

Nomenclature

A — surface area

Appyir — members of the entry matix A which connect component p of the heat flux at
nodal point L with component 7 of the heat flux at nodal poin M

a(q,0) — bilinear form

B[(T, q), (0, Q)] - bilinear form
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B LpM

members of the entry matrix B which connect component p of the heat flux at nodal poin
L with temperature at nodal point M

b (T, Q) bilinear form

Gy
Cm
DLM

FyHy,—

Ky
f

a
g
(?ﬁ

g(L)mn
H, (div)

Hl

O,

9.
qn

q,
T

T,
Th
TL, qL

X
e,

partitioning of the domain €2 into elements €2,

space of all functions with continuous partial derivatives of order < m

members of the entry matrix D which represent contribution from convective heat
transfer

members of the entry matrices F, H, K which represent contribution from the heat
sources, prescribed hat flux and convective heat transfer, respectively

heat source, [W/m?K]

Euclidian shifting operator

components of the contravariant fundamental metric tensors with respect to natural
coordinate system &“

components of the contravariant fundamental metric tensors with respect to y”
coordinate system

space of all vector fields which are square integrable and have square integrable
divergence

space of all scalar fields which are square integrable and have square intergable
gradients

elements of L, (€2)

convective coefficient, [W/m?K]

radiative coefficient

second order tensor of thermal conductivity

Hilbert space of all real measurable square integral functions

mesh refinement factors

number of elements

number of freedom degrees

outward unit surface normal

number of freedom degrees per temperature

number of freedom degrees per flux

local base functions

index denoting prescribed values of temperature and heat flux

test function per heat flux

space of heat flux trial functions

heat flux, [W/m?]

prescribed heat flux due to the convection

prescribed heat flux

prescribed heat flux due to the radiation

temperature, [K]

temperature of the surrounding medium, [K]

space of temperature trial functions

value of temperature and heat flux at the node L

column vector

s, t=1,2,3) — coordinate system at each global node L, per heat flux

Z(i,j, k, 1=1,2,3) — global Cartesian coordinate system

Greek letters

a, &y, Y
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q

— Cronecker symbol

— Stefan-Boltzmann constant

— space of temperature test functions

— test function per temperature

— value of temperature and heat flux test functions at the node L
— space of heat flux test functions

— inner part of Q

— closed and bounded domain of the Euclidian space £ (n =1, 2, 3)
— elements of C,

— boundary of 2

— part of the boundary per heat flux due to the convection

— part of the boundary per heat flux due to the radiation

— part of the boundary per temperature

— part of the boundary per heat flux

& (a,b,c,d=1,2,3)— local natural (convective) coordinate systems (¢, b, ¢, d=1, 2, 3)

Subscripts

L — free index i. e. unrepeated index which doesn't take part in summation

v — index denoting variable values of temperature and heat flux

vp — index denoting matrix entries which multiply prescribed values of temperature and heat
flux

vy — index denoting matrix entries which multiply variable values of temperature and heat
flux

p — index denoting prescribed values of temperature and heat flux
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