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A new orig i nal pri mal-mixed fi nite el e ment ap proach and re lated hexa he -
dral fi nite el e ment HC:T/q for the anal y sis of be hav ior of solid bod ies un der
ther mal load ing is pre sented. The es sen tial con tri bu tions of the pres ent ap -
proach is the treat ment of tem per a ture and heat flux as fun da men tal vari -
ables that are si mul ta neously cal cu lated, as well as ca pa bil ity to in tro duce
ini tial and pre scribed tem per a ture and heat flux. In or der to min i mize ac cu -
racy er ror and en able in tro duc tions of flux con straints, the tensorial char -
ac ter of the pres ent fi nite el e ment equa tions is fully re spected. The pro posed 
fi nite el e ment is sub jected to some stan dard bench mark tests in or der to test
con ver gence of the re sults, which en lighten the ef fec tive ness and re li abil ity
of the ap proach pro posed.
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Introduction

In creased ther mal ef fi ciency and the in teg rity of ma te ri als in high-tem per a ture
en vi ron ments is an es sen tial re quire ment in mo dem en gi neer ing struc tures in, au to mo -
tive, aero space, nu clear, off shore, en vi ron men tal and other in dus tries. Now a days, the fi -
nite el e ment method is used reg u larly to ob tain nu mer i cal so lu tions for heat trans fer prob -
lems. The most com mon choice when us ing fi nite el e ments is stan dard Galerkin
for mu la tion [1, 2].

In the pres ent pa per a new orig i nal fi nite el e ment ap proach for solv ing steady
state heat trans fer in the solid body, is pre sented. The main mo tive for the pres ent in ves ti -
ga tion is found in the lack of hexa he dral (solid) fi nite el e ment that is re li able [1] and ro -
bust, mainly in ac cor dance to change of its as pect ra tio. In ad di tion, the mo tive is also
found in the need for the fi nite el e ment pro ce dure which treats both vari ables of in ter est,
tem per a ture and heat flux, as fun da men tal ones [2]. More over, the mo tive is found in
well-known prob lem of con nect ing fi nite el e ments of dif fer ent dimensionality, i.e. when
a model prob lem has geo met ri cal tran si tions from solid to thick or thin shell/plate.

Fur ther, the main ob jec tive of the pres ent in ves ti ga tion is to show that a new re li -
able [1] mixed hexa he dral (brick) fi nite el e ment HC:T/q [2] can be used in the anal y sis of
en gi neer ing con struc tions of ar bi trary shape, so with out need for a pos te ri ori cal cu la tion
of heat fluxes. Thus, on the con trary to the pri mal ap proach, pres ent fi nite el e ment ap -
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proach has two fun da men tal vari ables, tem per a ture and heat flux, which are cal cu lated si -
mul ta neously.

Con se quently, the main goal of the pres ent in ves ti ga tion is to val i date the use of
the new fi nite el e ment HC:T/q in steady state heat anal y sis of iso tro pic, orthotropic or
multi-ma te rial solid bod ies un der dif fer ent ther mal or me chan i cal load ing sce nar ios.

The fu ture in ves ti ga tion is ori ented to ward im ple men ta tion of the pres ent ap -
proach in the ex ist ing in-house pri mal-mixed elas tic ity code [5] for more ac cu rate de ter -
mi na tion of ther mal stresses, where no con sis tency prob lem will oc cur in cal cu la tion of
ther mal and me chan i cal de for ma tions [3, 4].

Weak form of the steady state heat field equations

Let us con sider a body which oc cu pies some closed and bounded do main W of
the Eu clid ian space En (n = 1, 2, 3). The in ner part of W is de noted by W, and its bound ary
by ¶W, W W WÈ =¶  . The bound ary is sub di vided into four parts: ¶WT, ¶Wq, ¶Wc, and ¶Wr

which are: part of the bound ary per tem per a ture, heat flux, heat flux due to the con vec -
tion, and heat flux due to the ra di a tion, re spec tively, such that ¶WT È ¶Wq È ¶Wc È ¶Wr Ì
¶W. The state of the body is de scribed by tem per a ture T and heat flux vec tor q. Let us con -
sider a com plete sys tem of field equa tions for steady-state heat trans fer in the strong
form, where:

divq + f = 0  in  W (1)

q = –kÑT  in  W (2)

are respectively, the equation of thermal balance that states that the divergence of the heat 
flux is equal to the internal heat source f, and Fourier’s law of heat conduction, which
assumes that the heat flux is linearly related to the negative gradient of the temperature,
where k is second order tensor of thermal conductivity, which is heat transfer property of
an general orthotropic material. If the material is homogeneous and isotropic, the tensor 
k will degenerate to simple scalar value k, i. e. thermal conductivity coefficient.
Nevertheless, the present approach considers full tensor of thermal conductivity.

These two equa tions are sub jected to the fol low ing bound ary con di tions:

T T T= on ¶W (3)

q = qh = h  on  ¶Wq (4)

q = qc = hc(T – Ta)  on  ¶Wc (5)

q = = -q h A T Tr r a rs ¶( )4 4 on W (6)

which are, boundary conditions per temperature (3) and per heat flux (4)-(6). More
clearly, boundary conditions due to the prescribed heat flux are given by the expression
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(4). Further, boundary conditions due to the convection are given by the expression (5),
where hc is the convective coefficient and Ta is the temperature of the surrounding
medium. Finally, boundary conditions due to the radiation (6) are not presently
considered.

Let us sup pose that bound ary con di tion (3) is es sen tial, and hence ex actly sat is -
fied by the trial func tions of a prob lem. Then we need to con sider only the weak forms of
the eqs. (1) and (2). Us ing the Galerkin pro ce dure, one can seek the weak so lu tion of eq.
(1):

( )div dq + =ò f q W
W

0 (7)

where  q denotes test functions in the complete space of the interpolation function, which
are taken from the Hilbert space L2 of all real measurable square integral scalar functions: 

g 2dWW <ò 4, with the inner product ( , )h g hg= ò dWW  and the norm defined by g g g
2

= ( , )
for all h, g ÎL2(W).

Fur ther, we will con sider the weak form of in verted con sti tu tive eq. (2), where
vec tor Q is the test func tion taken from the space of all mea sur able square integrable vec -
tor fields:

( )k q Q- +Ñò =1 0T dW
W

(8)

Weak formulation of the mixed problem

Sim ple sum ma tion of eqs. (7) and (8) gives us the ex pres sion which rep re sents
asym met ric weak for mu la tion of the mixed prob lem.

Find {T, q}ÎH1(W)´H(div) sat is fy ing bound ary con di tions and

( ) ( )k q Q q- +Ñ = +òò
1 T fd div dW W

WW

q

for all
{ , } ( ) ( )qQ Î ´L L2 2W W (9)

In these ex pres sions, H(div) is the space of all vec tor fields which are square
integrable and have square integrable di ver gence with the norm de fined by 
g g g

2 2 2= +ò [( ) ]div dWW  for all g Î H(div).
How ever, it is a com mon opin ion that asym met ric for mu la tions are im prac ti cal

from the com pu ta tional point of view. In te grat ing by parts and ap ply ing di ver gence the o -
rem on the first term on the right side of eq. (9) yields sym met ric weak form of a mixed
prob lem, where H1 is the space of all sca lar fields which are square integrable and have
square integrable gra di ents, with the norm g g g

2 2 2= ¢ +ò [( ) ]dWW  for all g Î H1(W):

Find {T, q} Î H1(W)´L2(W) such T T
T¶W

=  that and
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qk Q Q q- + Ñ × = Ñ -ò -ò -òòò
1 d d d d d dW W W W W

W W WWW

T f q qh c
q

q q q q¶ ¶
¶

W
W¶ c

ò (10)

for all {q, Q} Î H1(W)´L2(W) such that q
¶WT

=0.

Finite element approximation of the field equations

Let Ch be the par ti tion ing of the do main W  into el e ments Wi and let us de fine fi -
nite el e ment subspaces for the tem per a ture sca lar T, the heat flux vec tor q and the ap pro -
pri ate test (weight) func tions, re spec tively as:
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(11)

In these ex pres sions TL and qL are nodal val ues of the tem per a ture sca lar T and
flux vec tor q, re spec tively. Ac cord ingly, PL and VL are cor re spond ing val ues of the in ter -
po la tion (lo cal base) func tions con nect ing tem per a tures and fluxes at an ar bi trary point in 
Wi (the body of an el e ment), and the nodal val ues of these quan ti ties. The com plete anal -
ogy holds for the tem per a ture and flux weight func tions q and Q . Please note that, as an
es sen tially new ap proach, trial and test base func tions for ap prox i ma tion of fluxes are
pres ently cho sen from the smaller, but con tin u ous space H1, that will pro vide the con tin u -
ous heat flux pic ture over the do main of the model prob lem. 

It should be noted that if pres ent fi nite el e ment ap proach is ap plied on model
prob lems with abrupt ma te rial changes (multimaterials), where lo cal heat flux dis con ti -
nu ity ex ists, the pres ent rule (that  lo cal flux ap prox i ma tion func tions are from con tin u -
ous func tion space H1) is too hard. It is left for fu ture in ves ti ga tion to re lax stress con ti nu -
ity on the in ter face sur face(s) only, where fluxes will be cho sen from space L2 as in eq.
(10). Nev er the less, it will be shown that this lo cal vi o la tion does not af fect ex pected tar -
get re sults in the vi cin ity or on the ma te rial in ter face.

Numerical implementation

By anal ogy with fi nite el e ment ap proach in elas tic ity [5], af ter discretization of
the start ing prob lem us ing fi nite el e ment method, pres ent scheme can be writ ten as a sys -
tem of lin ear equa tions of or der n = nq + nT, where nT is the num ber of tem per a ture de grees 
of free dom, while nq is the num ber of flux de grees of free dom, in ma trix form:
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In this ex pres sion, un known (vari able) and known (ini tial, pre scribed) val ues of
the fluxes and tem per a tures, de noted by the in di ces v and p re spec tively, are de com posed.

The nodal flux (qpL ) and tem per a ture (TL ) com po nents are con sec u tively or -
dered in the col umn ma tri ces q and T re spec tively. The ho mo ge neous and nonho mog e -
nous es sen tial bound ary con di tions per tem per a tures Tp and fluxes qp are in tro duced as
con tri bu tion to the right-hand side of the ex pres sion (12).

The mem bers of the en try ma tri ces A, B, and D, and the col umn ma tri ces F, H,
and K in expression (12), are re spec tively:

A g V k g V B g V PLpMr L p
a

L ab M r
b

M e LpM
e

L p
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L
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(13)

In the above ex pres sions, the Eu clid ian shift ing op er a tor g L p
a
( )  is given by 

g g z z yL p
a

ij
ac i c j L p

( )
( )( / ) ( / )= d ¶ x¶ ¶ ¶  where, zi(i, j, k, l = 1, 2, 3) is global Car te sian

co or di nate sys tem of ref er ence. Fur ther, y(L)r(r, s, t = 1, 2, 3) is co or di nate sys tem at each
global node L, per heat flux. Fur ther, lo cal nat u ral (con vec tive) co or di nate sys tems per fi -
nite el e ments are de noted by  xa(a, b, c, d = 1, 2, 3), while, gab and g(L)mn are com po nents
of the contravariant fun da men tal met ric ten sors, the first one with re spect to nat u ral co or -
di nate sys tem of a fi nite el e ment xa, and the sec ond to y(L)n at global node L . Fur ther more,  
PM,a º ¶PM/¶xa. Since tensorial char ac ter is fully re spected, one can eas ily choose ap pro -
pri ate co or di nate sys tem at each global node, use ful for pre scrib ing of fluxes and/or tem -
per a tures, or re sults in ter pre ta tion.

 It should be noted that ma trix form expression (12) rep re sents a new orig i nal
form of re sult ing sys tem of lin ear equa tions in the steady state heat anal y sis. Es pe cially,
be cause con tri bu tion from con vec tive heat trans fer rep re sented by ma trix en try  is nat u -
rally as sem bled to spec i fied po si tion in expression (12) con nected to tem per a ture de grees 
of free dom.

Finite element HC8/27

Mixed fi nite el e ment per tem per a ture and flux, HC8/(9-27), is shown in fig. 1.
Its ac ro nym is taken from [5], where the first let ter H stands for hexa he dral el e ment geo -
met ri cal shape, while the let ter C in di cates the use of con tin u ous ap prox i ma tion func -
tions. 

Tem per a ture and heat flux fields are ap prox i mated at least by eight tri-lin ear
shape func tions con nected to eight cor ner nodes (el e ments HC8/9, HC8/21, and
HC8/27), or at least by twenty tri-qua dratic shape func tions con nected to eight cor ner
nodes and twelve mid-side nodes (el e ments HC20/21 and HC20/27). In ad di tion, sta bi li -
za tion of fi nite el e ment is achieved by full or par tial hi er ar chic in ter po la tion of heat flux.
In case of the el e ment HC8/(9-27) shape func tions for flux are one or der higher than for
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tem per a ture, while for HC20/(21-27) they
are both qua dratic. Thus, for el e ment
HC20/27 twenty-seven flux nodes are avail -
able to ac com mo date full triquadratic ex -
pan sion in nat u ral co or di nates xa   (a = 1, 2,
3). Con se quently, fol low ing multifield com -
bi na tions of tem per a ture and flux nodes are
avail able to user: HC8/9, HC8/21, HC8/27,
HC20/21, and HC20/27. More over, per each 
cor ner node there is max i mum four de grees
of free dom n = 4 (one tem per a ture de gree of
free dom nT = 1 and three de grees of free dom
per heat flux nq = 3). For el e ment
HC20/(21-27) twelve mid-side nodes can
also have de grees of free dom for flux and

tem per a ture. At hi er ar chi cal nodes there are only de grees of free dom con nected to heat
flux.

Solution of the resulting system of linear equations

In the pres ent pa per, the method based on multifrontal ap proach, one of the main 
cat e go ries of di rect meth ods for solv ing of the re sult ing sys tem of lin ear equa tions, is
used. The core of that method is taken from the code MA47 [6], rep re sent ing a ver sion of
sparse Gaussi an elim i na tion which is im ple mented us ing multifrontal method.

Low order tests

In or der to check nec es sary and suf fi cient con di tions for con ver gence, low or der 
tests are tra di tion ally the first steps in the val i da tion pro cess of each new fi nite el e ment.
In ad di tion, some au thors con sid ered these tests as tools for as sess ment of ro bust ness of
fi nite el e ment al go rithms. In the pres ent pa per, nec es sary [10] and suf fi cient con di tions
[11, 12] solvability tests are con sid ered.

Necessary conditions for solvability

It is con sid ered that sin gle fi nite el e ment passes solvability test if num ber of its
flux de grees of free dom nq is greater than num ber of tem per a ture de grees of free dom nT.
This test is known [10] as sin gle el e ment patch test. In case of the fi nite el e ment HC8/27
we have nT = 8 and nq = 81. So ev i dently, it passes the pres ent test. In ad di tion, its sim pler
con fig u ra tions, HC8/8 and HC8/9, pass the pres ent test also, be cause nq

HC8 8 24/ =  and 
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nq
HC8 9 27/ = , that are again  greater  than  num ber of  the tem per a ture de grees of free dom

nT =  8.
Fur ther, fi nite el e ment HC20/20, HC20/21 and HC20/27, have nq

HC20 20 60/ = , 
nq

HC20 21 63/ = , and nq
HC20 27 81/ =   flux de grees of free dom, re spec tively. So, for these fi nite

el e ments, the num ber of heat flux de grees of free dom is ev i dently greater than the num -
ber of the tem per a ture de grees of free dom nT = 20. Con se quently, for those el e ments nec -
es sary con di tions for solvability are sat is fied also.

Sufficient conditions for solvability
Eigenvalue analysis

In or der to check if one fi nite el e ment is sen si tive to the lock ing phe nom ena, that 
is, to il lus trate that el e ment is free of spu ri ous zero-en ergy modes (mech a nisms), an
eigenvalue anal y sis of sin gle fi nite el e ment is usu ally per formed [12]. This test is also
known as suf fi cient con di tions for solvability test. It should be noted that pres ently one
fi nite el e ment free of bound ary con di tions, passes suf fi cient solvability test if num ber of
zero eigenvalues of the rel e vant sys tem ma trix in eq. (12) is equal to one, from the rea son
that pri mal vari able is sca lar func tion.

For ex am ple, for fi nite el e ment HC8/27, num ber of neg a tive eigenvalues cor re -
sponds to num ber of tem per a ture de grees of free dom nT = 8 ́ 1 = 8, while num ber of pos i -
tive eigenvalues cor re sponds to num ber of flux de grees of free dom nq = 27 ´3 = 81.

In tabs. 1 and 2, cal cu lated eigenvalues are sorted in in creas ing or der. All
eigenvalues con nected to the tem per a ture de grees of free dom are re ported. On the other
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Table 1. Eigenvalues for different one finite element configurations HC8/8, HC8/9, and HC8/27

Mode (dof) HC8/8 HC8/9 HC8/27

1

Temp

–1.951941E-01 –2.290541E-01 –3.303563E-01

2 –1.951941E-01 –2.290541E-01 –3.303563E-01

3 –1.951941E-01 –2.290541E-01 –3.303563E-01

4 –9.884506E-02  –9.884506E-02 –1.560596E-01

5 –9.884506E-02 –9.884506E-02 –1.560596E-01

6 –9.884506E-02 –9.884506E-02 –1.560596E-01

7 –4.166667E-02 –4.166667E-02 –5.384102E-02

8 Zero 0 0 0

9

Flux

4.629630E-03 4.629630E-03 9.093757E-05

10-31

32 3.201941E-01

33-35

36 4.685373E-01

37-89

90 1.290335E+00



hand, only the small est and larg est eigenvalue con nected to flux de grees of free dom are
re ported here. We may also see that fi nite el e ments HC8/8, HC8/9 pass the pres ent test,
with num ber of neg a tive eigenvalues equal to num ber of tem per a ture de grees of free dom
and pos i tive eigenvalues equal to num ber of flux de grees of free dom, i. e. nq

HC8 8 24/ =  and  
nq

HC8 9 27/ = .
Re sults of the pres ent test for fi nite el e ments, HC20/20, HC20/21, and HC20/27

are anal o gous, i. e. all of them pass the test, where num ber of neg a tive eigenvalues is
equal to 20, and the num ber of pos i tive eigenvalues is equal to 60, 63, and 81, re spec -
tively.

Table 2. Eigenvalues for different one finite element configurations HC20/20, HC20/21,
and HC20/27

ModE (dof) HC20/20 HC20/21 HC20/27

1

Temp

–5.274123E-01 –5.628892E-01 –6.405245E-01

2 –5.274123E-01 –5.628892E-01 –6.405245E-01

3 –5.274123E-01 –5.628892E-01 –6.405245E-01

4 –4.693950E-01 –4.693950E-01 –5.465386E-01

5 –2.822907E-01 –2.822907E-01 –3.245214E-01

6 –2.822907E-01 –2.822907E-01 –3.245214E-01

7 –1.391434E-01 –1.391434E-01 –1.583908E-01

8 –1.391434E-01 –1.391434E-01 –1.583908E-01

9 –1.391434E-01 –1.391434E-01 –1.583908E-01

10 –8.229060E-02 –8.229060E-02 –8.810544E-02

11 –8.229060E-02 –8.229060E-02 –8.810544E-02

12 –8.229060E-02 –8.229060E-02 –8.810544E-02

13 –4.450799E-02 –4.649999E-02 –4.732059E-02

14 –4.450799E-02 –4.649999E-02 –4.732059E-02

15 –4.450799E-02 –4.649999E-02 –4.732059E-02

16 –4.117091E-02 –4.117092E-02 –4.117092E-02

17 –2.614909E-02 –2.614909E-02 –2.639023E-02

18 –2.614909E-02 –2.614909E-02 –2.639023E-02

19 –2.614909E-02 –2.614909E-02 –2.639023E-02

20 Zero 0 0 0

21

Flux

2.232664E-03 2.061110E-03 1.408515E-04

22-79

80 3.718892E-01

81-83

84 1.191550E+00

85-100

101   1.645062E+00
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High-order tests
The mathematical convergence requirements

As the fi nite el e ment mesh is re fined, so lu tion of dis crete prob lem should ap -
proach to the an a lyt i cal so lu tion of the math e mat i cal model, i. e. to con verge. The con -
ver gence re quire ments for shape func tions of an isoparametric el e ment can be grouped
into three cat e go ries, that is: com plete ness, com pat i bil ity and sta bil ity [1, 2].Con se -
quently, we may say that con sis tency and sta bil ity im ply con ver gence.

Com plete ness cri te rion re quires that el e ments must have enough ap prox i ma tion
power to cap ture the an a lyt i cal so lu tion in the limit of a mesh re fine ment pro cess. There -
fore, the fi nite el e ment ap prox i ma tion func tions must be of cer tain poly no mial or der en -
sur ing that all integrals in the cor re spond ing weak for mu la tion have mea sur able val ues.
Spe cif i cally, if m is variational in dex cal cu lated as the high est spa tial de riv a tive or der
that ap pears in the en ergy func tional of the rel e vant bound ary value prob lem, than the el -
e ment base ap prox i ma tion func tions must rep re sent ex actly all  poly no mial terms in or -
der m £1  in el e ment co or di nate sys tem. A set of shape func tions that sat is fies this con di -
tion is called m-com plete.

Fur ther, com pat i bil ity cri te rion re quires that fi nite el e ment shape func tions
should pro vide tem per a ture con ti nu ity be tween el e ments, in or der to pro vide that no ar ti -
fi cial tem per a ture gaps will ap pear dur ing heat trans fer. As the mesh is re fined, such gaps
could mul ti ply and may ab sorb or re lease spu ri ous en ergy. So, patch trial func tions must
be Cm–1 con tin u ous be tween in ter con nected el e ments, and Cm piecewise dif fer en tia ble in -
side each el e ment.

Nev er the less, com plete ness and com pat i bil ity are two as pects of so-called con -
sis tency con di tion be tween math e mat i cal and dis crete mod els. Con se quently, a fi nite el e -
ment model that passes both com plete ness and con ti nu ity re quire ments is called con sis -
tent.

Fur ther, if con sid ered fi nite el e ment is sta ble, non-phys i cal zero-en ergy modes
in fi nite el e ment model prob lem will be pre vented. The over all sta bil ity of mixed for mu -
la tions is pro vided if two nec es sary con di tions for sta bil ity are ful filled  i. e.,  the first con -
di tion rep re sented by the el lip tici ty on the ker nel con di tion and sec ond con di tion rep re -
sented by the inf-sup con di tion [1, 2].

It should be noted that sat is fac tion of the com plete ness cri te rion is nec es sary for
con ver gence of the fi nite el e ment so lu tions, while vi o lat ing other two cri te ri ons does not
nec es sary mean that so lu tion will not con verge.

Consistency condition for finite element HC(8-20)/(9-27)

Pres ently, variational in di ces for tem per a ture vari able field and flux vari able
field are both m = 1. Fur ther, in the pres ent for mu la tion, test and trial tem per a ture and
heat flux ap prox i ma tion func tions are cho sen to be from the sub-space H1(W), as it can be
seen from ex pres sion (11). Con se quently, they are cho sen to have C0 con ti nu ity, i. e. they
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are con tin u ous, with fi nite first de riv a tives. Ac cord ingly, the com plete ness and com pat i -
bil ity re quire ments for both fields are sat is fied in the pres ent case.

Nev er the less, it should be noted that from the rea son that flux de riv a tives do not
ap pear in the pres ent for mu la tion (10), the over-con strained con ti nu ity re quire ment on
the heat flux’s trial and test shape func tions may be re laxed to be from sub-space L2  i. e.
dis con tin u ous, be tween the fi nite el e ments if it is phys i cally jus ti fied, as in the case of the
abrupt ma te rial changes (on the in ter face of two ma te ri als).

First stability condition

The mixed for mu la tion that we are con sid er ing can be writ ten in the form :

B[(T, q), (q, Q)] = F(q, Q) (14)

where

B q Q qk Q Q q[( , ), ( , )] :T Tq q= + Ñ × - Ñòòò
-1 d d dW W W

WWW

(15)

for ( , ), ( , ) ( ) ( )T H L nq Qq Î ´1
2W W

i. e.
B[(T, Q),(q, q)] = a(q, Q) + b(T, Q) – b(q, q) (16)

A ma jor dif fi culty arises when we try to prove if the cho sen fi nite el e ment spaces 
yield sta ble ap prox i ma tions. The first sta bil ity con di tion sta bil ity can be proved if the
bilinear form B[(T, q), (q, Q)] is co er cive.

Note that in this case, al though B is not co er cive, at least a is, i. e. the in equal ity 
a( , )Q Q Q³a

2
 for all Q Î L2 holds for some pos i tive con stant a.

How ever, the con di tion that the a form is co er cive is not sat is fied for most mixed 
meth ods. It turns out that one can get by with a weaker con di tion than coercivity of a on
L2, namely coercivity on a par tic u lar subspace H1.  More pre cisely, sup pose that a pos i -
tive con stant ah ex ists, such that

a z z z z Z Z z b v z vh h h h h( , ) , { ( , )³ Î = Î = Îa J
2

0for  all for all Q } (17)

where Jh and Qh are flux and temperature test approximation functions respectively. It
should be noted that presently, test and trial flux local approximation functions are from
continuous finite element subspace Jh Ì (H1)n. In fact, any choice of subspaces Jh Ì (H1)n

yields stable approximation [2], from the reason that the corresponding bilinear form  is
quadratic.

In ad di tion, in the anal y sis of the pres ent mixed for mu la tion, a is pos i tive def i -
nite, sym met ric and bounded, and eq. (17) is sat is fied for all QÎJh. Con se quently, in the
pres ent prob lem a is co er cive.
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Hence, the first sta bil ity con di tion of the pres ent fi nite el e ment fam ily is sat is -
fied a pri ori.

Second stability condition

For the pres ent fi nite el e ment, the sec ond sta bil ity con di tion is sat is fied if value
gh, fol low ing from LBB (Ladyzhenskaya, Babuška, Brezzi) con di tion (see [13], p. 76, eq.
3.22), re mains bounded above zero for the meshes of in creas ing den sity: 

g g£ =
Î Î

h
T H Q H

h h

h h
n

b Q T

Q T
inf sup

( , )

( )
1 1

(18)

where

b Q T Q Th h h h e
e

i

( , ) = ×Ñòå dW
W

(19)

Q Q Qh h h e
e

i

2
= ×òå dW

W

(20)

T T Th h h e
e

i

2
= Ñ Ñòå dW

W

(21)

In ad di tion, con di tion (18) en sures solvability and optimality of the fi nite el e -
ment so lu tion [11]. It should be em pha sized also, that bound ary con di tions per tem per a -
ture do not en ter the pres ent test.

Be cause ver i fi ca tion of the con di tion like (18) in volves an in fi nite num ber of
meshes, it can not be per formed an a lyt i cally.There fore, nu mer i cal inf-sup [1] test should
be per formed for a lim ited num ber of meshes of in creas ing re fine ment. Con se quently, in
the pres ent case, nu mer i cal inf-sup test is rep re sented by gen er al ized eigenvalue prob -
lem, in ma trix no ta tion given by:

B A B x K xh h
T

h
- =1 l (22)

where B and A are matrix entries in expression (12). Further, matrix K is the system
matrix from the corresponding standard primal steady state heat finite element method,
where entries are given by:

K P k PLM L c
cd

M d e
e

e

= òå , , dW
W

(23)

The square root of the small est eigenvalue of the prob lem (22), that is (lmin)
1/2, is 

equal to the inf-sup value gh in condition (18). If the inf-sup val ues, for cho sen se quence
of fi nite el e ment meshes, do not show de crease to ward zero (mean ing that lmin val ues sta -
bi lize at some pos i tive level) it can be said that the el e ment passes the inf-sup test. It
should be noted that de creas ing of the inf-sup val ues on log-log di a gram would be seen as 
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a curve with mod er ate or ex ces sive slope. This ap proach was al ready used in [14] for test -
ing the sta bil ity of quad ri lat eral fi nite el e ments QC4/5 and QC4/9, and in [5, 15] for test -
ing the sta bil ity of the hexa he dral fi nite el e ment HC8/9 in lin ear elas tic ity. Nev er the less,
the in ves ti ga tion whether the pres ent fi nite el e ments passes nu mer i cal inf-sup test (22) is
left for fu ture re port.

Numerical experiments

Al though some ex act so lu tions are avail able in stan dard ref er ences, there are
few three-di men sional cases avail able. In the pres ent sec tion pro posed method is tested
on the sev eral stan dard bench mark ex am ples in steady state heat anal y sis. Size of el e -
ments is cho sen to achieve rea son able en gi neer ing ac cu racy with rea son able com put ing
times. Only those re sults for which the the o ret i cal so lu tion is known are given, while
other re sults avail able from the anal y ses are not re ported here.

Cooling of the still rod

A nickel-steel rod of length l = 0.1 and ra dius r = 0.01 [9] ini tially held at a uni -
form tem per a ture of  200 °C  is sud denly ex posed to the en vi ron men tal tem per a ture Ta

 = 
= 30 °C. One end of the nickel-steel rod is heated to the tem per a ture of T = 200 °C. The
other end is in su lated, so there are no any bound ary con di tions per tem per a ture or heat
flux. The ma te rial ther mal con duc tiv ity is 12 W/m°C, while the con vec tive heat trans -
fer co ef fi cient is 22.11 W/m2°C.

Pres ent so lu tions are ob tained us ing hexa he dral meshes HC20/21 of in creas ing
re fine ment along the rod lon gi tu di nal axe (z–axe), while re fine ment x-y in  plane is
shown in fig. 2. The rel a tive ab so lute er ror, for the re sults ob tained with sev eral pres ent
fi nite el e ment con fig u ra tion, in ac cor dance to 1-D are shown in fig. 3.
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Figure 2. Cooling of the still rod model problem



From the fig. 3 we can see ex cel lent agree ment with the o ret i cal re sults ob tained
by one-di men sional the ory, which is less than 0.8% in er ror for all mon i tored rod’s sec -
tions.

Solid steel billet

In the pres ent ex am ple steady state heat trans fer in a solid steel bil let [7], shown
in fig. 4, is an a lyzed. Fixed tem per a tures are ap plied on the two end sur faces, and forced
con ven tion on the other faces. The tar get value is tem per a ture at the point A, that is TA =
32.8 °C. The ma te rial  ther mal  con duc tiv ity  is 50 W/m°C, while the heat trans fer co ef fi -
cient is 100 W/m2°C. Am bi ent bulk fluid tem per a ture is 0 °C.
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Figure 3. Solid billet: the relative absolute error in
accordance to 1-D theory

Figure 4. Solid
steel billet model
problem



The model is discretized by in creas ing se quence of the re fine ment fac tors N = 4,
6, 8, 10, 12, and 14 and L = 3, 4, 5, 6, 7, and 8, where dis tri bu tion of fi nite el e ments is
given by the pat tern N ´ 3N ´ L along x, y and, z axes, re spec tively, in or der to check the
con ver gence of the fi nite el e ment so lu tions.

From the tem per a ture re sults at the tar get point with co or di nates (0.2, 3, 0.0), we
may see that both fi nite el e ment ap proaches, pres ent HC8/9 and pri mal HEXA8, con -
verge uni formly to the same value which is less than 1% lower than tar get value (fig. 5).

Nev er the less, the main dif fer ence is in cal cu la tion of heat flux field. In the pri -
mal ap proach (Straus7) it is cal cu lated  a pos te ri ori that re sults with ab nor mal dis con ti -
nu ity along el e ment in ter faces (see fig. 6 on the left), which raise the need for the use of
some re cov ery or smooth ing tech nique of the heat flux (dual) vari able [8]. On the other
hand, pres ently heat flux field is cal cu lated as the fun da men tal vari able and it is con tin u -
ous as it is ex pected to be (see fig. 6 on the right).
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Figure 5. Solid billet: the convergence of temperature at
target point

Figure 6. Heat flux qy calculated by the primal (left) and present mixed approach (right)



Hollow cylinder with fixed temperature BC's

In this ex am ple heat trans fer through a hol low cyl in der is an a lyzed. Fixed tem -
per a ture T = 20 °C  is pre scribed on the outer sur face of the cyl in der, and con vec tion oc -
curs on the in ner sur face. Fluid in side the cyl in der is air, con vec tion co ef fi cient be tween
in ner wall of the cyl in der and air is 30 W/m°C , and the air tem per a ture is T = 100 °C.

Fi nite el e ment model is three-di men sional sec tion of the hol low cyl in der with
one layer of HC20/21 el e ments along the axis of the cyl in der. Only one quar ter of the
model is an a lyzed due to the sym me try. Tar get value is the tem per a ture on the in ner sur -
face [17]. The con ver gence of the re sults is shown in the fig. 7. In the same fig ure one can
also see the size of the rel a tive er ror com pared to the ex act the o ret i cal so lu tion.

From the re sults re ported in fig. 8, we may no tice that pres ent fi nite el e ment
scheme in stantly con verge to the tar get re sult.

Hollow sphere with two materials and convective BC's

Steady state heat trans fer through a sphere made of two ma te ri als is an a lyzed
[18]. The  in ner ra dius is of 0.30 m, the in ter fa cial ra dius is 0.35 m, and outer ra dius is
0.37 m. The sphere has con vec tion bound ary con di tions, both on the in ner and outer sur -
face. On the outer sur face, con vec tion co ef fi cient is 200 W/m2°C, and on the in ner sur -
face its value is 150 W/m2°C. Fluid in side and out side of the sphere is air. Its tem per a ture
in side the sphere is T = 70 °C and out side is T = –9 °C. Ther mal con duc tiv i ties of the ma -
te ri als are 40 W/m°C (in ner sphere) and 20 W/m°C (outer sphere). In this ex am ple the in -
ner (A), ma te rial bound ary (B), and outer sur face (C) tem per a tures are de ter mined.
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Figure 7. Hollow cylinder Figure 8. Hollow cylinder: Temperature result at
target point and relative errors



Only 1/8 of the sphere (as shown in fig. 9) has been an a lyzed, due to the sym me -
try. Fi nite el e ment HC 20/21 has been used for this model, be cause it uti lizes tri-qua dratic 
ap prox i ma tion of ge om e try, tem per a ture and heat flux. The four fi nite el e ment meshes
con sid ered are shown in fig. 9.

Re sults for tem per a ture val ues on three ra dii of the pres ently con sid ered sphere
namely at nodes A, B, and C, are shown in the tab. 3, as well as figs. 10 and 11.

              Table 3. Temperature values on three radii of the sphere

NEL T(A) T(B) T(C)

6 25.03 17.66 12.93

60 24.95 17.7 13.03

189 24.9 17.66 12.99

432 24.87 17.63 12.97

Target 25.06 17.84 13.16

From the re sults re ported in the figs. 10 and 11, we may see that pres ent so lu -
tions con verges to some new tar get val ues that are a lit tle bit lower in ac cor dance to the
given ones [18]. Nev er the less, for all con sid ered tar get points rel a tive er ror per fi nite el e -
ment mesh in ac cor dance to the tar get re sult, is less than 1.75%.
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Figure 9. Two-material hollow sphere



Conclusion

In the pres ent text, math e mat i cal as pect of con ver gence of the pro posed fi nite el -
e ment fam ily HC(8-20)/(9-27), are an a lyzed. It is proven that pres ent fi nite el e ment fam -
ily is con sis tent, solv able, and passes first sta bil ity con di tion. Fur ther, from the stan dard
bench mark ex am ples in steady state heat anal y sis of solid bod ies solved by the pres ent fi -
nite el e ment fam ily, we may pre lim i nary con clude that it con verges re gard less of the ge -
om e try, abrupt ma te rial changes, or dis tor tion of the fi nite el e ment (e. g. ex ces sive thick -
ness ra tio). More over, we may em pha size that one of the main po ten tials of the pres ent
hexa he dral fi nite el e ment is in over com ing of well-known tran si tion prob lem of con nect -
ing fi nite el e ments of dif fer ent types and di men sions.

Con se quently, we may end with con clu sion that pres ent fi nite el e ment ap proach
gives us greater de sign free dom than stan dard pri mal ap proaches that use dif fer ent kind
of fi nite el e ments: solid, plate/shell, beam. It should be noted that tem per a ture re sults ob -
tained by the pres ent ap proach are a lit tle bit lower than avail able tar get re sults. In ad di -
tion, pres ent fi nite el e ment ap proach will be used in con nec tion with the ex ist ing
in-house soft ware [5], based on the orig i nal re li able mixed dis place ment/stress fi nite el e -
ment ap proach in elas tic anal y sis, which is new orig i nal weakly cou pled mixed steady
state heat / thermoelasticity fi nite el e ment ap proach in lit er a ture, with unique de sign
char ac ter is tics.

Nomenclature

A –  surface area
ALpMr – members of the entry matix A which connect component p of the heat flux at

nodal point L with component r of the heat flux at nodal poin M
a (q,Q) –  bilinear form
B[(T, q), (q, Q)] –  bilinear form

127

Mijuca, D. M., @iberna A. M., Medjo B. I.: A New Multifield Finite Element Method in ... 

Fig ure 10. Con ver gence of the tem per a ture
val ues on three ra dii of the sphere

Figure 11. Relative errors of calculated
temperature values compared to the exact
solutions



BLpM – members of the entry matrix B which connect component p of the heat flux at nodal poin   
L with temperature at nodal point M

b (T, Q)– bilinear form
Ch – partitioning of the domain W into elements Wi

Cm – space of all functions with continuous partial derivatives of order £ m
DLM – members of the entry matrix D which represent contribution from convective heat

transfer
FM,HM,– members of the entry matrices F, H, K which represent contribution from the heat
KM – sources, prescribed hat flux and convective heat transfer, respectively
f – heat source, [W/m2K]
g L p

a
( ) – Euclidian shifting operator

gab – components of the contravariant fundamental metric tensors with respect to natural
coordinate system xa

g(L)mn – components of the contravariant fundamental metric tensors with respect to y(L)n

coordinate system
H(div) – space of all vector fields which are square integrable and have square integrable

divergence
H1 – space of all scalar fields which are square integrable and have square intergable

gradients
h, g – elements of L2 (W)
hc – convective coefficient, [W/m2K]
hr – radiative coefficient
k – second order tensor of thermal conductivity
L2 – Hilbert space of all real measurable square integral functions
N, L – mesh refinement factors
NEL – number of elements
n – number of freedom degrees
n – outward unit surface normal
nT – number of freedom degrees per temperature
nq – number of freedom degrees per flux
PL, VL – local base functions
p – index denoting prescribed values of temperature and heat flux
Q – test function per heat flux
Qh – space of heat flux trial functions
q – heat flux, [W/m2]
qc – prescribed heat flux due to the convection
qh – prescribed heat flux
qr – prescribed heat flux due to the radiation
T – temperature, [K]
Ta – temperature of the surrounding medium, [K]
Th – space of temperature trial functions
TL, qL – value of temperature and heat flux at the node L
x – column vector
y(L)r (r, s, t = 1, 2, 3) – coordinate system at each global node L, per heat flux
zi (i, j, k, l = 1, 2, 3) – global Cartesian coordinate system

Greek  letters

a, ah, g – positive constants
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dij – Cronecker symbol
s – Stefan-Boltzmann constant
Qh – space of temperature test functions
q – test function per temperature
qL – value of temperature and heat flux test functions at the node L
Jh – space of heat flux test functions
W – inner part of W
W – closed and bounded domain of the Euclidian space En (n = 1, 2, 3)
Wi – elements of Ch

¶W – boundary of W
¶Wc – part of the boundary per heat flux due to the convection
¶Wr – part of the boundary per heat flux due to the radiation
¶WT – part of the boundary per temperature
¶Wq – part of the boundary per heat flux
xa (a, b, c, d = 1, 2, 3) – local natural (convective) coordinate systems (a, b, c, d = 1, 2, 3)

Subscripts

L – free index i. e. unrepeated index which doesn't take part in summation
v – index denoting variable values of temperature and heat flux
vp – index denoting matrix entries which multiply prescribed values of temperature and heat

flux
vv – index denoting matrix entries which multiply variable values of temperature and heat

flux
p – index denoting prescribed values of temperature and heat flux
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