TY - JOUR TI - Comparison of oxygen carriers for chemical-looping combustion AU - Johansson Marcus AU - Mattisson Tobias AU - Lyngfelt Anders JN - Thermal Science PY - 2006 VL - 10 IS - 3 SP - 93 EP - 107 PT - Article AB - Chemical-looping combustion is a combustion technology with inherent separation of the greenhouse gas CO2. This technique involves combustion of fossil fuels by means of an oxygen carrier which transfers oxygen from the air to the fuel. In this manner a decrease in efficiency is avoided for the energy demanding separation of CO2 from the rest of the flue gases. Results from fifty oxygen carriers based on iron-, manganese- and nickel oxides on different inert materials are compared. The particles were prepared using freeze granulation, sintered at different temperatures and sieved to a size 125-180 mm. To simulate the environment the particles would be exposed to in a chemical-looping combustor, reactivity tests under alternating oxidizing and reducing conditions were performed in a laboratory fluidized bed-reactor of quartz. Reduction was performed in 50% CH4/50% H2O while the oxidation was carried out in 5% O2 in nitrogen. In general nickel particles are the most reactive, followed by manganese. Iron particles are harder but have a lower reactivity. An increase in sintering temperatures normally leads to an increase in strength and decrease in reactivity. Several particles investigated display a combination of high reactivity and strength as well as good fluidization behavior, and are feasible for use as oxygen carriers in chemical-looping combustion.