TY - JOUR
TI - Simulations of the kettle reboiler shell side thermal-hydraulics with different two-phase flow models
AU - Pezo Milada L
AU - Stevanović Vladimir D
AU - Stevanović Žarko
JN - Thermal Science
PY - 2006
VL - 10
IS - 2
SP - 127
EP - 140
PT - Article
AB - A computational fluid dynamics approach is presented for the simulation and analyses of the kettle reboiler shell side thermal-hydraulics with two different models of two-phase flow – the mixture and two fluid model. The mixture model is based on solving one momentum equation for two-phase mixture flow and a closure law for the calculation of the slip between gas and liquid phase velocities. In the two fluid modeling approach the momentum balance is formed for each phase, while the gas-liquid interaction due to momentum exchange at the interface surface is predicted with an empirical correlation for the interface friction coefficient. In both approaches the two-phase flow is observed as two inter-penetrating continua. The models are solved for the two-dimensional geometry of the kettle reboiler shell side vertical cross section. The computational fluid dynamics numerical method based on the SIMPLE type algorithm is applied. The results of both liquid and vapor velocity fields and void fraction are presented for each modeling approach. The calculated void fraction distributions are compared with available experimental data. The differences in the modeling approaches and obtained results are discussed. The main finding is that the void fraction distribution and two-phase flow field strongly depends on the modeling of the slip between liquid and gas phase velocity in mixture model or on the interface friction model in two fluid model. The better agreement of the numerically predicted void fraction with the experimental data is obtained with the two fluid model and an interfacial friction model developed for the conditions of two-phase flows in large volumes of kettle reboilers or different designs of steam generators.