TY - JOUR TI - Numerical analysis for the impacts of using nano-enhanced PCM on the thermal management of battery module AU - Selimefendigil Fatih AU - Çakmak Fethi A AU - Öztop Hakan Fehmi JN - Thermal Science PY - 2024 VL - 28 IS - 2 SP - 1893 EP - 1904 PT - Article AB - The temperature and temperature differences in the battery module rise as a result of the high heat output produced by lithium-ion batteries during operation. This can reduce the operating safety of the battery and reduce the battery life. As a result, the temperature of the batteries must be controlled well by thermal management. Thermal control of batteries employs both active and passive techniques. In this study, PCM, which is a passive cooling system, was used. It has been observed that by placing PCM around the battery, it effectively reduces the peak temperature during the end of discharge in the battery cell. The RT-27 and nano-doped RT-27 with suitable melting range were used as PCM. Four different situations were investigated at 0.3C and 0.5C discharge conditions. These are battery models coated with only the battery, RT-27, coated with nano-RT-27, and coated with RT- 27 and nano-RT-27, respectively. The peak temperature was found to be higher when the battery module without PCM was compared to the others. The battery module coated on both surfaces with RT-27 and nano-RT-27 performed better than the other modules. At 0.3 C-Rate, the peak temperature reduces by 1.8 K while it is 4.4 K at 0.5C-Rate.