TY - JOUR TI - Comparative analysis of cooling effect of battery module cooling plate structures AU - Fang Haifeng AU - Xu Juncheng AU - Lu Yiqiang AU - Wang Mingqiang AU - Li Xin JN - Thermal Science PY - 2024 VL - 28 IS - 2 SP - 851 EP - 861 PT - Article AB - In order to investigate the impact of cooling plate channel structural parameters on the cooling performance of battery modules, a heat generation model for LiFePO4 batteries was established. Based on the model, the 1C discharge process of LiFePO4 batteries at room temperature (25℃) was simulated, and relevant heat release data were obtained. On this basis, three different cooling plate structures (Model A, Model B, Model C) were designed, and the cooling performance of the cooling liquid (50% water and 50% ethylene glycol) for the battery module was analyzed by simulation at different mass-flow rates (0.15 kg/s, 0.18 kg/s, 0.21 kg/s), along with the pressure, temperature difference and flow rate of the cooling channel. The results showed that the uniformity of the flow rate in the channel can reduce the temperature difference. Under the same mass-flow rate, the temperature difference of the battery module on the same surface between Model A and Model C was 1.1℃, but too many channels would increase the pressure drop. The pressure drop of Model C was more than 10 times that of Model B. Therefore, it is necessary to design the channel structure reasonably while ensuring the heat dissipation effect. Finally, based on the simulation results, beneficial suggestions for the cooling and cooling plate design and manufacture of energy storage container battery modules are proposed.