TY - JOUR TI - Source apportionment of oxidative potential: What we know so far AU - Stevanović Svetlana AU - Jovanović Maja AU - Jovašević-Stojanović Milena V AU - Ristovski Zoran JN - Thermal Science PY - 2023 VL - 27 IS - 3 SP - 2347 EP - 2357 PT - Article AB - In numerous epidemiological studies, exposure to particulate matter (PM) has been associated with negative health outcomes. It has been established so far that the detrimental health effects of particles cannot be explained by a single parameter, such as particle mass, as the complexity of chemical composition and reactivity of particles are not always represented by the mass loadings. The oxidative potential (OP) of aerosol particles represents a promising indicator of their potential toxicity. To develop strategies and regulations at improving the air quality, an increasing number of studies are focused on the application of source apportionment (SA) of PM., while a limited number of SA investigations have been applied to OP. In this review previous research of SA of atmospheric PM OP and proposed guidelines for future studies are summarized. Most of the research studies were carried out in an urban area and focused on PM2.5, while few studies examined other PM fractions. It was noted that the three dominant contributors to OP were biomass burning (9-97%), secondary aerosols (6-67%), and traffic/vehicles (16-88%). The presence of other factors that contributed to the in-crease of OP to a lesser extent depended on the location and season. Further, a considerable discrepancy in the contribution of various OP vs. PM sources was discovered using SA models. Because of this, the use of SA is not equivalent when considering the mass of PM and its toxicity.