TY - JOUR TI - Analysis of propagation characteristics of hydrogen flame in shock tube in integrated energy system AU - Zhao Baohua JN - Thermal Science PY - 2023 VL - 27 IS - 2 SP - 1059 EP - 1066 PT - Article AB - In order to study the explosion law of hydrogen and air premixed gas in the pipe-line, the author proposes an analysis of the propagation characteristics of hydrogen in the shock tube in the integrated energy system. Use a square transparent pipe with a size of 150 mm×150 mm×1000 mm, the shape of the explosion flame, the propagation velocity and the pressure change with the hydrogen volume fraction from 10-40% were observed through experiments. Flame spread and pressure were recorded and measured by high speed cameras and pressure sensors, respectively. Experimental results show that the explosion flame characteristics and pressure changes are greatly affected by the hydrogen volume fraction. With the increase of hydrogen volume fraction, the maximum velocity and maximum value of flame in pipe increase significantly. The maximum flame propagation speed is increased from 18.3-304.2 m/s, and the propagation time is shortened from 123.5-10.5 ms. The pressure peak increased from 2.95-34.06 kPa. The analysis of the propagating characteristics of the hydrogen flame in the shock tube in the integrated energy system can well reflect the intensity of the hydrogen explosion. Do not use abbreviations and acronyms in the abstract.