TY - JOUR TI - Numerical investigation on cooling rate in proton exchange membrane fuel cell using propylene glycol fluid AU - Sahoo Dillip Kumar AU - Ram Sri Gowtham AU - Prasath Sriram JN - Thermal Science PY - 2023 VL - 27 IS - 5 SP - 3621 EP - 3634 PT - Article AB - In this study, a cooling channel was constructed inside the fuel cell to examine the impact of cooling on proton exchange membrane fuel cell performance. The performance of the fuel cell was assessed using four different coolant mixtures: DI100 (100% deionized water – DI), PG10 (90% DI water + 10% propylene glycol), PG20 (80% DI water + 20% propylene glycol), and PG30 (70% DI water + 30% propylene glycol). The efficiency of the fuel cell, system temperature, operating parameters, coolant, and cooling channel shape of the fuel cell were tested using a CFD model based on the finite volume approach. The test results showed that the fuel cell performance was good for both single-cell fuel cells and fuel cell stacks at temperatures of 354 K and 360 K, respectively. However, as the membrane became dehydrated above 362 K for single cell fuel cells and after 371 K for fuel cell stacks, performance of the fuel cell decreased and no appreciable improvement was seen. For single cells, the fuel cell showed good performance improvement at PG30 combinations, whereas the best performance in stacks was attained at PG20 combinations.