TY - JOUR TI - The content of hydrogen to the effect on the combustion characteristics of biomass-derived syngas AU - Chen Guoyan AU - Shen Zheng AU - Zhang Junsheng AU - Zuo Shuangshuang AU - Zhang Anchao AU - Deng Haoxin AU - Mei Yanyang AU - Meng Fanmao JN - Thermal Science PY - 2022 VL - 26 IS - 6 SP - 5267 EP - 5276 PT - Article AB - Biomass-derived syngas is prone to leakage during transportation. To safely use biomass-derived syngas, we need to study the combustion characteristics of material syngas the purpose of this paper is: at T = 303 K, P = 0.1 MPa, under the condition of the spherical expansion flame method, calculate the laminar burning velocity, and used the Chemkin module of ANSYS to simulate four mechanisms (GRI-3.0,FFCM-1,Li-2015,SanDiego +NOx-2018) to compare, select more appropriate reaction mechanism through experimental data for related research. It was found that the chemical reaction mechanism of GRI-3.0 is more in line with the experimental results. It is found that the experimental results are in good agreement with the linear extrapolation method. When the H2 concentration in-creases from 22-42%, the peak laminar burning velocity moves in the direction of the lean fuel side. When the H2 concentration increases to 42%, the laminar burning velocity is the fastest, reaching 0.78 m/s. The effect of H2 on thermal diffusivity is high. When H2 concentration reaches 42%, its thermal diffusivity is much higher than other gas components. The adiabatic flame temperature of F1 (22% H2, 45% CO, 9.6% CH4, 23.4% CO2)-air mixtures is the highest, approaching 2196 K. The peak adiabatic flame temperature of F5 (42% H2, 25% CO, 9.6% CH4, 23.4% CO2)-air mixtures is 2082 K, which is comparatively low. Nonetheless, the H2 concentration in F5-air mixtures is higher than that in F1-air mixtures, indicating that H2 has less influence on adiabatic flame temperature than CO. The positive reactions to accelerate laminar burning velocity mainly include R99, R38, and R46. The R52 and R35 can inhibit laminar burning velocity. There are many factors affecting laminar burning velocity, among which high reactive free radicals are the main factors, and the competition between chain branching reaction and chain termination reaction for high reactive free radicals also affects laminar burning velocity. With the increase of concentration of H2, participate in the reaction of the molar mass fraction of highly reactive free radicals and the laminar burning velocity.